
Meta-Learner LSTM for Few Shot Learning
Stanislas Furrer∗, Yiğit Efe Erginbaş† and Mert Kayaalp‡

School of Engineering (STI)
École polytechnique fédérale de Lausanne (EPFL)

Lausanne, Switzerland
Email: ∗stanislas.furrer@epfl.ch, †yigit.erginbas@epfl.ch, ‡mert.kayaalp@epfl.ch

Abstract—Recently, large-scale few-shot learning (FSL) has
become topical. It is an important challenge in deep learning as
large number of training instances may not be available in many
real-world settings. Learning to accurately classify objects from
a few training examples is often unfeasible due to over-fitting
effects. To overcome this challenge, meta-learning based few-shot
learning has been suggested to acquire quick knowledge from few
examples. Ravi & Larochelle [1] has addressed the weakness of
neutral networks trained with gradient-based optimization on
the few-shot learning problem by framing the problem within
a meta-learning setting. They use an LSTM-based meta-learner
optimizer to learn the exact optimization algorithm used to train
another learner neural network classifier in the few-shot regime.
In this paper, we expand the performance analysis of their
algorithm. By comparing with other state of the art techniques,
we demonstrate the strengths and weaknesses. Additionally, we
replace the LSTM form with other recurrent cell structures used
in the literature and compare their performance. Finally, we
illustrate the cross domain performance of the algorithm.

I. INTRODUCTION

The availability of large quantities of labelled data
has enabled deep learning methods to achieve impressive
breakthroughs in several tasks related to artificial intelligence,
such as speech recognition [2], object recognition [3] and
machine translation [4]. These systems, however, usually
require a large amount of labelled data, which can be
impractical or expensive to acquire. Limited labelled data
lead to over-fitting and generalization issues in classical deep
learning approaches. On the other hand, existing evidence
suggests that human visual system is capable of effectively
operating in small data regime: humans can learn new
concepts from a few samples, by leveraging prior knowledge
and context. The problem of learning new concepts with
small number of labelled data points is usually referred as
few-shot learning [5]–[7].

Vinyals et al. [8] proposed matching networks that combine
both embedding and classification to form an end to end
differentiable nearest neighbors classifier. A much simpler
and scalable technique is proposed by Snell et al. [9] and is
called Prototypical Network. The algorithm learns a metric
space in which classification can be performed by computing
distances to prototype representations.

In this paper we study the performance of the meta learning
approach proposed by Ravi & Larochelle [1]. They addressed
the few shot learning problem with a meta-learning approach

which works by learning a parameterized function that
embeds a variety of learning tasks and can generalize to new
ones. They proposed an LSTM based meta-learner model to
learn the exact optimization algorithm used to train another
learner neural network classifier in the few-shot regime. Their
meta-learning technique leads to learning the appropriate
parameter updates together with a general initialization of the
learner, which allows quick convergence in the training.

II. META-LEARNER LSTM FOR FEW SHOT LEARNING

Traditional gradient based optimization methods fail in few-
shot learning settings because the algorithms such as AdaGrad,
AdaDelta, Adam might need thousands of iterations in order
to converge if the step-sizes are not well-chosen. In order to
resolve this issue, Ravi & Larochelle has proposed an LSTM-
based meta-learner that learns the best gradient-based update
rule for the learner parameters.

A. Model Description

Traditional optimization algorithms are variants of gradient
descent of the form

θt = θt−1 − αt∇θt−1
Lt (1)

The main observation of this paper is that this gradient
descent update is similar to cell state update in an LSTM.

ct = ft ◦ ct−1 + it ◦ c̃t (2)

If ft = 1, ct−1 = θt−1, it = αt, c̃t = −∇θt−1
Lt , one

recovers the standard gradient descent update. However, for
faster and better convergence, one can freely choose ft and
it while keeping ct−1 = θt−1 and c̃t = −∇θt−1

Lt intact.
Therefore, Ravi & Larochelle propose training a meta-learner
LSTM for learning the update rules for it (the input gate) and
ft, (the forget gate):{

it = σ(WI [∇θt−1
Lt, Lt, θt−1, it−1] + bI)

ft = σ(WF [∇θt−1
Lt, Lt, θt−1, ft−1] + bF)

(3)

where σ is the default sigmoid function. In addition to
parameters {WI , bI ,WF , bF }, the initial weights for the
learner, co, are also meta-learned. Note that if there was
no budget for adaptation to tasks (no gradient step for
specification to task), co would correspond to the optimum
weight that minimizes the expected risk of multiple tasks.

B. Parameter sharing and Pre-processing

Since the number of weight parameters can be in the order
of millions, employing different meta learner parameters for
each of them can be computationally expensive. Therefore,
LSTM parameters are shared and same update rule has been
applied to all learner parameters. Furthermore, meta-learner is
fed with a pre-processed version of the gradients and losses
in the form proposed in [10] so that the magnitude and sign
information would be separated. Pre-processing is formulated
as in Equation 4 and p = 10 has been used in the experiments,
as proposed in [1].

x =

{
(log (|x|)/p, sgn(x)) |x| ≥ e−p

(−1, epx) o.w.
(4)

III. EXPERIMENTAL RESULTS

A. Experimental Setup

The implementation has been done in Python using the
Tensorflow API as it enables us to speed up the training
process besides simplifying the design of the pipeline
architecture. Training with the default settings takes nearly
2.5 hours on a single Tesla V100 while occupying 2GB GPU
memory. We comply with the implementation details and
hyper-parameter selections given in the paper by Ravi &
Larochelle. Although the authors have also published their
code with the paper, we have only used it as a reference
while implementing our code since their code is in Lua [11].

Algorithm 1: Meta-Training

Inputs: Learner M with parameters θ,
Meta-Learner R with parameters Θ

Θ0 ← random initialization
for n=1,N do

Dtrain, Dtest ← random sets from Dmeta−train
θ0 ← c0
for t=1,T do

Xt, Yt ← random batch from Dtrain

Lt ← L(M(Xt, θt−1), Yt)
θt ← R(∇θt−1Lt,Lt)

end
X,Y ← Dtest

Ltest ← L(M(X, θT), Y)
Update Θn by ∇Θn−1Ltest using Adam optimizer

end

All of the data sets are split into three subsets that contain
images from different classes and they are referred as
training, validation and testing data. The adaptation process
of the meta-learner LSTM consists of 3 different stages:
meta-training, meta-validation and meta-testing. We start
with the meta-training stage and and train the meta-learner
for 100,000 episodes. In each episode, we randomly sample
5 classes from the meta-training data, and in each class,
we pick 1 or 5 (depending on #-of-shots) instances for the
episode-training set and 15 for the episode-evaluation set.
The learner applies a gradient descent on the episode-training

set using the rule determined by the meta-learner and then
the meta-learner is evaluated according to the performance
of the learner on the episode-evaluation set. In order to
update the parameters of the meta-learner, a back-propagation
is applied on the evaluation loss. After each 500 episodes
of meta-training, we switch to a meta-validation stage and
apply the same episode procedure using the meta-validation
data without updating the parameters of the meta-learner.
After all meta-training process is completed, we test the final
performance of the meta-learner on meta-testing data for 600
episodes and use the results as the performance measure.

B. Accuracy Comparison for Different Data Sets

Ravi & Larochelle test their proposed algorithm using
the mini-ImageNet data set, which is a smaller version of
the original Imagenet data set and designed to be used in
evaluating the performance of few-shot learning algorithms.
They provide the results that they have obtained in both
1-shot and 5-shot learning settings and compare it with
the state-of-art algorithms at the time. To validate the
correctness of our implementation, we start by comparing our
results to the reported numbers for the mini-ImageNet data set.

TABLE I: Accuracy obtained on mini-Imagenet with different
architectures. We report the mean of 600 randomly generated
test episodes as well as the 95% confidence intervals.

5-shot 1-shot
Meta-Learner LSTM
(Ravi & Larochelle) 60.6 ±0.71 43.4 ±0.77

Meta-Learner LSTM
(Our implementation) 61.1 ±0.69 44.0 ±0.73

MatchingNet [8] 55.3 ±0.73 43.6 ±0.84
MAML [12] 62.7 ±0.71 46.5 ±0.82
ProtoNet [9] 66.7 ±0.68 47.7 ±0.84

Although the authors only preferred testing on the mini-
ImageNet data, there are also other data sets widely used for
bench-marking few-shot learners and we have chosen to use
the following two: The CUB data set consisting of colored
images of different bird species and the Omniglot data set
consisting of gray-scale images of various letters. Since
images in the Omniglot data set are easier to be classified
compared to mini-ImageNet and CUB, the convention in the
literature is to work with 1-shot classification tasks.

TABLE II: Accuracy obtained on CUB & Omniglot with
different architectures. We report the mean of 600 randomly
generated test episodes and the 95% confidence intervals.

CUB Omniglot
Meta-Learner LSTM
(Our implementation) 51.6 ±0.72 94.7 ±0.44

MatchingNet [8] 59.3 ±0.75 no data
MAML [12] 75.8 ±0.76 98.7 ±0.40
ProtoNet [9] 76.4 ±0.64 98.8 ±0.34

As the results show, the proposed algorithm is successful
in achieving a performance similar to state-of-art approaches

for the mini-ImageNet data set. However, the results do
not generalize to other data sets we test on. The reason
might be that the image classes in both CUB and Omniglot
data sets are similar, while the mini-ImageNet classes have
quite different attributes. This suggests that Meta-Learner
LSTM technique is not suitable for fine-grained classification
problems that require the extraction of small details.

C. Different Recurrent Cell Structures

Adaptive SGD: In order to have a baseline to compare
the results obtained using recurrent cell structures, we start by
implementing a basic non-recurrent adaptive SGD optimizer.
This structure can only learn the initial parameters of the
learner and the SGD step-size that will be used to update the
parameters of the learner during its training.

Complete-LSTM: Ravi & Larochelle present their algorithm
as an LSTM meta-learner since its structure resembles the
LSTM cell previously proposed in [13]. However, the standard
LSTM also has an output gate that produces the next hidden
state, besides the input and forget gates described in a
previous section. Therefore, we have implemented a modified
LSTM meta-learner by including an additional output gate and
referred this new structure as Complete-LSTM.

GRU: There is also another recurrent approach in the
literature called GRU cells which is used to reduce the
computational complexity of an LSTM cell while mostly
preserving the performance [14]. Hence, we have also
implemented a GRU-like structure using similar ideas.

TABLE III: Accuracy obtained on mini-ImageNet using
meta-learners with different recurrent cell architectures. We
report the results of 600 randomly generated test episodes.

Recurrent Cell Accuracy (5-class, 5-shot)
Adaptive SGD 55.5 ±0.70
LSTM 61.1 ±0.69
Complete-LSTM 57.5 ±0.70
GRU 59.7 ±0.67

The results show that all of the recurrent structures
perform better than a non-recurrent strategy. The reason for
the Complete-LSTM structure to perform worse than the
proposed version is the excessive complexity which causes
over-fitting that will be discussed in the following section.
The GRU also performs suboptimally, however this is due to
its less complex structure and hence it can be preferred to the
proposed structure for its reduced computational costs.

D. Over-fitting and Reducing the Model Complexity

When we implement the meta-learner structure as described
in the paper, the test accuracy of the models starts to decrease
after reaching a maximum. Although we have tried decreasing
the learning rate or including gradient clippings as proposed
in [15] for recurrent networks, the issue was still persistent.
At the end, we have managed to solve this problem by
reducing the hidden size of the meta-learner cell structure,
and hence reducing the meta-learner model complexity. Since

the issue only exists in the test results and has been solved by
decreasing model complexity, we can relate it to over-fitting.
The learning curves obtained for different hidden sizes can
be found in Appendix.

E. Data Augmentation

In order to cope with the over-fitting problem, we have also
tried implementing a data pre-processing stage before feeding
the training data to the meta-learner/learner pair. This process
mainly consists of random color jitters, crops and changes in
the aspect ratios as proposed in [16]. By adding more noise
and increasing the complexity of the data, we aim increasing
the robustness of the trained meta-learner. When we compare
the results obtained with and without a pre-processing stage,
we observe that we have achieved this goal.

TABLE IV: Accuracy of default meta-learner LSTM model
on default and augmented mini-ImageNet data. Augmentation
is done with random crops and color jitters.

Data augmentation Accuracy (5-class, 5-shot)
True 61.1 ±0.69
False 57.7 ±0.67

F. Cross-Domain Scenario

To further dig into the issue of domain differences, we have
designed a scenario that provides domain shifts. After training
the meta-learner model on either CUB or Omniglot data
set, we apply tests over the mini-ImageNet data. Although
the meta-learner LSTM learns to learn from the training
set during the meta-training stage, the results show that
meta-learner is not able to adapt to classes data are much
different. We can further observe that the accuracy becomes
lower as the domain difference gets larger. Since both CUB
and mini-ImageNet data sets consist of colored images of
physical entities, they include similar features and a transfer
between them becomes possible up to some degree. However,
the Omniglot data set consists of single-channel images of a
different nature and the model transfer becomes harder.

TABLE V: Accuracy obtained by training meta-learners on
CUB or Omniglot and testing on mini-ImageNet data. We
report the results of 600 randomly generated test episodes.

Transfer Accuracy
5-class, 5-shot

Omniglot → mini-ImageNet 32.3 ±0.54
CUB → mini-ImageNet 44.0 ±0.67

IV. CONCLUSION

In this project, we have investigated the meta-learner LSTM
structure [1] in detail. In particular, besides reproducing
the results that have been reported by authors, we have
expanded the experiments to various data sets and recurrent
cell structures. Moreover, we have solved the problem of
decreasing accuracy after reaching a maximum, examined the
effect of data augmentation in the accuracy and explored the
scenario of cross-domain training-testing.

REFERENCES

[1] S. Ravi and H. Larochelle, “Optimization as a model for few-shot
learning,” in ICLR, 2017.

[2] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan,
O. Vinyals, A. Graves, N. Kalchbrenner, A. W. Senior, and
K. Kavukcuoglu, “Wavenet: A generative model for raw audio,”
CoRR, vol. abs/1609.03499, 2016.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” CoRR, vol. abs/1512.03385, 2015.

[4] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah,
M. Johnson, X. Liu, L. Kaiser, S. Gouws, Y. Kato, T. Kudo, H. Kazawa,
K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young, J. Smith, J. Riesa,
A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, and J. Dean, “Google’s
neural machine translation system: Bridging the gap between human and
machine translation,” CoRR, vol. abs/1609.08144, 2016.

[5] E. Bart and S. Ullman, “Cross-generalization: Learning novel classes
from a single example by feature replacement,” vol. 1, pp. 672– 679
vol. 1, 07 2005.

[6] M. Fink, “Object classification from a single example utilizing class
relevance metrics,” in Advances in Neural Information Processing
Systems 17 (L. K. Saul, Y. Weiss, and L. Bottou, eds.), pp. 449–456,
MIT Press, 2005.

[7] Li Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of object
categories,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 28, no. 4, pp. 594–611, 2006.

[8] O. Vinyals, C. Blundell, T. P. Lillicrap, K. Kavukcuoglu, and
D. Wierstra, “Matching networks for one shot learning,” CoRR,
vol. abs/1606.04080, 2016.

[9] J. Snell, K. Swersky, and R. S. Zemel, “Prototypical networks for few-
shot learning,” CoRR, vol. abs/1703.05175, 2017.

[10] M. Andrychowicz, M. Denil, S. G. Colmenarejo, M. W. Hoffman,
D. Pfau, T. Schaul, and N. de Freitas, “Learning to learn by gradient
descent by gradient descent,” CoRR, vol. abs/1606.04474, 2016.

[11] M. Dong, “meta-learning-lstm-pytorch.” https://github.com/markdtw/
meta-learning-lstm-pytorch, 2018.

[12] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” CoRR, vol. abs/1703.03400, 2017.

[13] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[14] M. Ravanelli, P. Brakel, M. Omologo, and Y. Bengio, “Light gated
recurrent units for speech recognition,” IEEE Transactions on Emerging
Topics in Computational Intelligence, vol. 2, p. 92–102, Apr 2018.

[15] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks,” in Proceedings of the 30th International
Conference on Machine Learning (S. Dasgupta and D. McAllester, eds.),
vol. 28 of Proceedings of Machine Learning Research, (Atlanta, Georgia,
USA), pp. 1310–1318, PMLR, 17–19 Jun 2013.

[16] C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 1–9, June 2015.

APPENDIX A
LEARNING CURVES FOR SOME OF THE EXPERIMENTS

Fig. 1: The training and testing accuracy obtained by
using different hidden sizes for the meta-learner architecture
(proposed value: 20). The test accuracy starts to reduce
after reaching a maximum when we use a large hidden
size, and hence a too complex architecture. However, the
training accuracy continues increasing with similar rates for
all structures. This suggests that complex architectures are
vulnerable to over-fitting.

https://github.com/markdtw/meta-learning-lstm-pytorch
https://github.com/markdtw/meta-learning-lstm-pytorch

Fig. 2: The training and testing accuracy obtained by
augmenting data with random crop and random jitter. When
we do not augment data, the model fits too much to the training
samples and the model cannot be generalized well enough on
the test.

APPENDIX B
PARAMETER UPDATES FOR META-LEARNER GATES

Fig. 3: The evolution of input gate values for randomly
selected parameters. The vertical axis is the value of the
parameter. The horizontal axis is the learning steps of the
learner in each episode. Each plot corresponds to a different
parameter. Each curve corresponds to a different test episode.

Fig. 4: The evolution of forget gate values for randomly
selected parameters. The vertical axis is the value of the
parameter. The horizontal axis is the learning steps of the
learner in each episode. Each plot corresponds to a different
parameter. Each curve corresponds to a different test episode.

	Introduction
	Meta-Learner LSTM for Few Shot Learning
	Model Description
	Parameter sharing and Pre-processing

	Experimental Results
	Experimental Setup
	Accuracy Comparison for Different Data Sets
	Different Recurrent Cell Structures
	Over-fitting and Reducing the Model Complexity
	Data Augmentation
	Cross-Domain Scenario

	Conclusion
	References
	Appendix A: Learning Curves for Some of the Experiments
	Appendix B: Parameter Updates for Meta-Learner Gates

