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Abstract

Self-supervised learning has grown in popularity due to its capability to avoid
the cost of human-annotated labels. One of the classes of methods that have
been behind this recent resurgence of self-supervised learning is named con-
trastive learning. Contrastive learning has become a dominant component in
self-supervised learning methods for natural language processing, computer vi-
sion, multi-modality alignment, and other domains. It aims to pull together the
embedding of an augmented version of a sample and push apart the different
sample’s embedding. Contrastive learning benefits from strong augmentation.
To be specific, stronger augmentations could expose novel patterns of represen-
tations that may improve the generalized ability of the method. Apart from
self-supervised, the generalized representation can be seen under the scope of ro-
bustness. Indeed, Ilyas et al., 2019 [1] have posit that ; Adversarial vulnerability
is a direct result of our models’ sensitivity to well-generalizing features in the data.
They presented the robust optimization as a tool for enforcing the generalization
aspect of features learned by deep neural networks. Motivated by the potential
synergy between robust optimization and multimodal contrastive learning, we
present in this paper RMCL; a robust multimodal contrastive learning. The goal
is to reinforce the joint representation of an image-text pair by robust contrastive
optimization. In RMCL, we attack a multimodal contrastive task to make the
joint representation of an image-text pair invariant to perturbation. In this work,
we leverage two well-known contrastive frameworks, BarlowTwins. (Zbontar et
al., [2]) and MoCo (Chen et al., 2020 [3]), in robust multimodal settings. We
pre-trained a multimodal algorithm ViLT (Kim et al., 2021 [4]) with our RMCL
framework and analyze the results. We confirm that our framework drives better
robustness against image and text attacks while keeping competitive accuracy
on downstream classification tasks with in-domain and out-of-domain datasets.
Furthermore, our contrastive approach improves the performance of ViLT on
image-text retrieval on both in-domain and out-of-domain datasets. Lastly, our
experience manifests that BarlowTwins reaches better overall performance over
MoCo under our RMCL settings
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Chapter 1

Introduction

“The road Reaches every place, the short cut only once“
- James Richardson [5]

1.1 Motivation & Related works

The AI field has made massive strides in developing AI systems that learn from
vast amounts of carefully labeled data in recent years. Researchers have spent
tremendous time and effort curating data and carefully labeling it. However,
moving forward, it seems impossible to annotate the vast amounts of data with
everything that we care about.

Supervised learning is a bottleneck for allowing more intelligent generalist
models to do various jobs and gain new abilities without extensive amounts of
labeled data. Supervised learning relies on the definition of categories and opti-
mizes its performance with a highly specific accuracy. In particular, it maximizes
accuracy without incorporating much prior context about classified classes, the
physical world, or other human-related concepts. This task-specific optimization
process comes at the cost of generalization (Wolpert et al., 1997 [6]). Beyond
the lack of generalization, the supervised paradigm can lead models to produce
shortcut solutions that perform well on a typical test set but fail under different
circumstances, revealing a mismatch with our intentions (Geirhos et al., 2020
[7]).

Our world is diverse yet profoundly structured, and humans have an uncanny
capacity to make sense of it without someone explicitly teaching it. As babies, we
learn how the world runs essentially by perception and association. Generalized
knowledge or common sense is taken for given for humans and animals but stay
a well-known challenge in Ai research since its origin.

Nowadays, the scientific community has found a promising way to approxi-
mate such common sense: self-supervised learning (SSL). Self-Supervised learn-
ing offers a promising alternative to supervised learning, where the data itself
gives the supervision for a learning algorithm. The fundamental idea of the self-
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1. Introduction 2

supervised task (also referred to as a pre-training task) is to utilize some section
of the data or a transformed version of it to produce labels to solve a super-
vised task. Specifically, self-supervised tasks act as a proxy strategy to learn
representations of the data using pseudo labels. These pseudo labels are cre-
ated automatically based on the attributes found in the data. Nevertheless, the
outcome of this created task is habitually dismissed. Instead, we focus on the
learned intermediate representation with the hypothesis that this representation
can offer excellent semantic and benefit a diversity of useful downstream tasks.

Specially, we may twist pictures randomly and train a model to predict when
pictures are twisted and how much. This prediction task is invented, so the per-
formance is insignificant. However, this pre-training method pushes the model to
acquire good semantic notions of objects. Indeed, when transferring this knowl-
edge to a downstream task that intends to recognize the same pictures with a
diverse twist, the model has learned to identify high-level object sections, such
as heads, noses, and the corresponding locations of these elements, rather than
restricted patterns. (Gidaris et al., 2018 [8]).

Self-supervised learning is a representation learning task. Representation
learning is a method that learns a parametric mapping from the raw input data
domain to a feature vector with the expectation of extracting more abstract and
valuable concepts. The representation learned by performing the pre-training
task can be used as a starting point for downstream supervised tasks (fine-tuning
tasks). Generally speaking, fine-tuning solutions projected from more general
representations learned from self-supervised tasks lead to robust predictions and
better out-of-sample performance.

In natural language modeling, this pre-training-fine tuning paradigm has been
widely used for many years with models such as BERT (Devlin et al., 2018 [9]),
RobERTa (Liu et al., 2019 [10]), XLM-r (Conneau et al., 2019 [11]) and many
others. The default pre-training task for a language model is to predict the next
word given the past sequence. Implicitly, predicting missing parts of the text
input makes the model learn to interpret the sense of the words, the syntactic
character of the words, and the meaning of entire texts. Natural Language model
pre-trained and fine-tuning on a specific supervised downstream task yield greater
performance than when only trained in a supervised fashion.

In computer vision, Self-supervised learning is quickly filling the gap with
the supervised method on large computer vision benchmarks (Chen et al., 2020
[12] ; Chen et al., 2020 [3] ; Grill et al., 2020 [13] ; Zbontar et al., 2021 [2]).
The classes of methods that have been behind this novel resurgence of SSL in
computer vision follows a paradigm called contrastive learning. The idea behind
contrastive learning is surprisingly simple: the model learns to encode images in
a lower-dimensional space so that similar images will be close to each other in
the low dimensional space at the same time, far away from other images. For
example, we may want the representation of cats to be close to other cats and
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far away from the representation of dogs. This simple idea is based on nothing
else than similarity and leads to potent representation. Contrastive methods do
not deflate away any rich semantics by projecting onto a single label selected
from only a handful of possible subjective categories. Instead, a discriminative
method learns good data representation by comparing an individual instance
among different samples.

In contrastive learning, data augmentation is the secret, and indeed a most
crucial ingredient in making this method works so well (Tian et al., 2020 [14]).
Indeed, it allows the models to have different views of the same signal and make
the contrastive task much harder. The contrastive learning approach is instilling
invariance to data augmentation. The model learns features that are less affected
by the rotation, the brightness, and other types of view of the same signal. It gives
a strong proxy for real-life semantics. In a sense, when humans are navigating in
the real world, they face different views of the same object.

Beyond computer vision alone, the contrastive learning framework has been
recently used to align two modalities. Radford et al., 2021 [15] presented CLIP
which efficiently learns visual concepts from natural language supervision. CLIP
has shown great success in various classification benchmarks without directly
optimizing/fine-tuning for the benchmark’s performance. It shows that the image
and text relation becomes much more representative thanks to their multimodal-
contrastive learning task.

The generalization of a model can also be seen under the scope of robustness.
The existence of adversarial examples and the fact that they may correspond
to flipping predictive features suggests that deep neural networks make predic-
tions based on vastly different features from what humans use or even recognize.
Initially, adversarial examples were view as being either a consequence of the
input space being high-dimensional (Gilmer et al., 2018 [16]) or attributed to
finite-sample phenomena (Tanay et al., 2016 [17]; Schmidt et al., 2018 [18]).

However, Ilyas et al., 2019 [1] have posit that Adversarial vulnerability is a
direct result of our models’ sensitivity to well-generalizing features in the data.
They presented the robust optimization as a tool for enforcing the generalization
aspect of features learned by deep neural networks. The authors demonstrate
that adversarial robustness leads to more human perception-aligned feature rep-
resentations. After all, the notion of robustness is human-specified. Adversarial
training (and more broadly robust optimization) can be thought of as a tool
to incorporate anthropocentric prior over the features. Although adversarially
robust models tend to attain lower accuracy than their standardly-trained coun-
terparts, recent work suggests that the feature representations of robust models
carry several advantages over those of standard models. Especially, Salman et
al., 2020 [19] provides evidence that adversarially robust computer vision mod-
els transfer better. This founding leverages the idea that adversarial robustness
leads to more generalized features representation.
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Only recently, researchers begin associating self-supervised learning to ad-
versarial robustness. Chen et al., 2020 [20] has included adversarial training
into self-supervision to produce general-purpose robust pre-trained vision mod-
els. Inspired by this research, Kim et al., [21] have leveraged the contrastive pre-
training task with adversarial learning and obtain comparable robust accuracy
comparing to state-of-the-art supervised adversarial learning tasks. Adversarially
robust deep learning occurs to be more data-demanding than conventional learn-
ing (Schmidt et al., [18] ). It is then reasonable to take advantage of unlabeled
data using self-supervised learning. Meng et al., 2021 [22] have improved the ro-
bustness of the pre-trained language model BERT by leveraging self-supervised
contrastive learning with word-level adversarial perturbation.

The above works and researches constitute our motivation to present in this
Master Thesis a Robust Multimodal Contrastive learning framework (RMCL).
It consists of leveraging the multimodal contrastive task with adversarial learn-
ing to gain robustness against adversarial attacks and synonymously enhance
the generalization of multimodal algorithms. Our intuition is that we reinforce
the joint representation of an image-text pair {Ii, Ti} by conducting robust con-
trastive optimization. Specifically, given an image-text pair {Ii, Ti}, we produce
deformities on each modality of the pair to maximize the contrastive loss of
their joint representation such that their semantic alignment became corrupted.
Then, we maximize the correlation between clean image-text pair representation
and their adversarial equivalents using contrastive learning to obtain joint repre-
sentations that overcome deformities produced by adversarial perturbations. It
results in learning joint V&L representations that are robust upon adversarial
attacks. Since our method does not rely on labels, we used an instance-wise
formulation of Projected Gradient Descent (PGD) (Madry et al., 2017 [23]) to
attack the pixel-space and the Geometric-inspired attacks (Meng et al., 2020 [24])
to generate word-level adversaries.

To confirm the effectiveness of the proposed RMCL, we leverage two well-
known contrastive frameworks MoCo (Chen et al., 2020 [3]) and BarlowTwins
(Zbontar et al., 2021 [2]) in a robust multimodal setting and validate our methods
on benchmark datasets. We used a pre-trained V&Lmodel ViLT (Kim et al., 2021
[4]) as a baseline and compare its robustness and accuracy performance with and
without our RMCL methods. ViLT is a convolution-free V&L model that opens
the possibility for on-the-fly pixel-space attacks. Indeed, ViLT uses a lightweight
and fast embedding of visuals inspired by ViT (Dosovitskiy et al., 2020 [25]).
The results reveal that when transferring on downstream task, the ViLT model
pre-trained with RMCL achieve better robustness to natural language adversaries
and images adversaries on two classification benchmark NLVR2 (Suhr et al., 2018
[26]) and VQA (Goyal et al., 2017 [27]). Furthermore, our task enhances the
model performance on retrieval tasks such as image retrieval and text retrieval
(Karpathy et al., 2015 [28]). Our framework has the added value to rely on
efficient V&L inputs attacks allowing adversarial training for ViLT on adversarial
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examples generated on the fly during training instead of generated beforehand

1.2 Contribution

In this thesis, we present a Robust Multimodal Contrastive learning (RMCL)
framework. Our idea is to reinforce the latent connection between modalities
through their adversarial samples. The synergy from Robust optimization and
contrastive learning leads to more robust and analogously more general joint-
representation of an image-text pair. Specifically, Our key contributions can be
summarized as follows :

• We developed the first Robust multimodal contrastive learning framework
using visual and textual adversarial samples as augmented views. We use an
instance-wise formulation of Projected Gradient Descent (PGD) to attack
the pixel-space and the Geometric-inspired attacks to generate word-level
adversaries.

• We extend for the first time the Barlow Twins contrastive framework into
multimodal settings.

• We tested our RMCL methods with ViLT as V&L model and either MoCo
or Barlow Twins as contrastive frameworks in multimodal settings.

• Also, for the first time, we apply instance-wise attacks in the input space
of a V&L model. Indeed, our efficient formulation of the attacks together
with ViLT allows an on-the-fly generation of adversaries during training.

• We show that thanks to our RMCL pre-training task, the robustness of
ViLT has slightly improved when fine-tuned on downstream tasks. Fur-
thermore, our methods conduct the pre-trained model to have better image
and text retrieval performances.

• Finally, we offer some improvement of our concept based on our observation.

1.3 Thesis outline

The remainder of this master thesis is organized as follows: In Chapter 2 we
outline the theoretical background and explore the different components for un-
derstanding our RMCL. We will review and present the strength of the MoCo
and Barlow Twins frameworks and depict the multimodal settings with the ViLT
architecture. Furthermore, we will present the augmentation and attacked views
used in our contrastive methodology. The experience description will be covered
in Chapter 3 and treats the different datasets, methods, models, and optimiza-
tion used. Following the review of the experiences, we will discuss in Chapter
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4 about the results. The choice of attack hyperparameters will be covered, and
the comparison of robustness and accuracy of the different methods and models
will be illustrated. Finally, Chapter 5 offers conclusions and discussions on the
conducted experiences and highlights future work that could further extend and
improve this work.



Chapter 2

Background

“In actuality, virtually all learning phenomena resulting from direct experiences
can occur on a vicarious basis through observation of other people’s behaviour

and its consequences for them.“
- Albert Bandura in Social Learning Theory, 1991 [29]

Contrastive learning is a family of Self-supervised learning tasks that found
great success in computer vision and multi modality alignment. (Chen et al.,
2020 [12] ; Chen et al., 2020 [3] ; Grill et al., 2020 [13] ; Zbontar et al., 2021 [2];
Radford et al., 2021 [15]) The rest of this chapter is organized as follows:

In this chapter, we will review the main component of contrastive learning and
its notable challenges in section 2.1-2.2. Afterward, we will illustrate in section
2.3 the different multimodal architecture and justify our algorithm choice. We
will then present in section 2.4 our Robust multimodal Contrastive Learning
methods under two contrastive frameworks; MoCo and Barlow Twins. Finally,
we will present the type of clean and attack augmentation of both vision and
language used in our contrastive task in section 2.5.

2.1 Self-Supervised Learning

Contemporary self-supervised learning methods can approximately be divided
into two families of methods : Predictive/Generative (eg. Oord et al., 2016 [30],
Lan et al., 2019[31]) and contrastive (eg. Chen et al., 2020 [12] ; Chen et al., 2020
[3]). The predictive method aims to predict any hidden part of the input from any
observed or unhidden section of the input. The predictive strategy is essentially
employed in NLP, where it is usual to hide part of the sentence and predict the
hidden words from the remaining words. Generally, this is done by solving a
classification problem over all finite vocabulary and computing a probabilistic
score using a softmax function. However, in computer vision, this task can’t be
easily extended since images/objects are living in a continuous space rather than
a discrete space. Alternatively, contrastive methods are used in computer vision.

7
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Unlike generative models, contrastive learning is a discriminative strategy that
strives at grouping similar examples closer and different examples far from each
other.

2.2 Contrastive Learning

A popular underlying idea that embodies contrastive methods is their intention
to learn invariant representations under diverse distortions (also referred to as
data augmentations). It is typically accomplished by maximizing the correlation
of representations acquired from various transformed variants of a sample using a
alternative of Siamese networks (Bromley et al., 1993 [32]). This idea is illustrated
in figure 2.1.

Figure 2.1: The underlying structure that unite contrastive methods. Each image
of a batch is transformed into two augmented views and fed into an encoder fθ.
Then the model is trained to maximize the similarity of the correlated represen-
tations yq and yk of the same image. It is usually done by making the cosine
similarity between the two vectors as close to one as possible.

We have a batch of sample X, and for each sample, we derive two distorted
versions of it by data augmentation. The transformed views are collected by
a combination of augmentations T . In particular for images, it could be blur,
random cropping and resizing, color distortion or perspective distortion, etc.
The two batches of transformed views Vq and Vk are next fed to a function fθ,
ordinarily an encoder with parameters θ, giving batches of representation Yq and
Yk. Yq and Yk have a size of Rn×m where n is the batch size and m the size of
the last hidden layers of fθ. Next, the model is trained so that two corresponding
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rows of Yq and Yk are close to each other in the embedding space. One way to
achieve this purpose is to make the cosine similarity between the two vectors as
close to one as possible. The cosine similarity of two variables (vectors) is the
cosine of the angle between them and is defined as follows:

cossim(yq, yk) =
yq · yk
‖yq‖‖yk‖

(2.1)

However, pulling the two vectors together with the cosine similarity alone will
lead to a collapse problem where the encoders fθ will learn to output a trivial
constant representation that maximizes the cosine similarity function. In order to
prevent this recurrent issue, all the recent approaches have implemented different
mechanisms.

2.2.1 SimCLR : The InfoNCE and the projector

Figure 2.2: SimCLR builds upon the same structure of Figure 2.1 while solving
the collapse problem. A projection head gθ and an encoder fθ are trained to
maximize the similarity using a contrastive loss. Once the training is ended, the
projection head gθ is discarded, and the encoder fθ together with the represen-
tation yi are used for the downstream tasks.

Contrastive methods like SimClr (Chen et al., 2020 [12]) in figure 2.2 defines
“positive” (or similar images) and “negative” (dissimilar images) samples pairs
treated differently in the loss function. Throughout the remainder of the thesis,
we use the terms of query and key used in (Chen et al., 2020 [3]). We view the
similarity matching as a dictionary lookup. We employ the symbols Q (query)
as the embedding of Y q and K (key) as the embedding of Y k.

SimClr uses the InfoNCE loss (Oord et al., 2018 [33]); a categorical cross-
entropy loss to identify the positive sample amongst a set of unrelated noise
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samples. The loss is defined as followed :

LinfoNCE = − log
exp (sim (q,k+) /τ)

exp (sim (q,k+) /τ) +
∑K−

i=0 exp
(

sim
(
q,ki−

)
/τ
) (2.2)

Where q is the embedding of the original sample, k+ represents a positive sample,
and k− represents a negative sample. More formally, a key is thought positive
k+ for a query q if it comes from a similar image and is thought negative k−
if it comes from a dissimilar images. The sim() function can be any similarity
function, but generally a cosine similarity as defined in equation 2.1 is used.
The sensitivity of the product is controls by τ a temperature hyper-parameter.
The denominator’s sum is calculated over one positive and K− negative pairs
in the same batch. It can be seen as a non-parametric variant of (K + 1)-
way softmax classification (Wu et al., 2018 [34]) of q to the corresponding k+.
When minimizing the InFONCE loss function in equation 2.2, the numerator
gauging the similarity of embedding from the matching pair is maximized while
the denominator computing the similarity with the dissimilar pairs is minimized.

SimClr’s authors have introduced a nonlinear learnable projector gθ between
the representations in their framework. Once the contrastive training stage is
completed, the projection head g(fθ) is abandoned. Later in transfer learning,
the encoder is used as the feature extractor. The authors conjecture that using
the representation before the nonlinear projection is due to the suppression of
knowledge provoked by the contrastive loss. Indeed, q = g(fθ) is trained to
be not affected by data transformation. Therefore gθ may discard beneficial
knowledge for the downstream task, such as the color or orientation of objects.
This methodology will be kept in the majority of future contrastive frameworks.
Additionally, the authors have l2-normalized the embedding vectors q and k.
Indeed some studies (Wang et al., 2017 [35]; Wang et al., 2020 [36]) have shown
the requirement of the norm constraint when doing feature vector dot products
in a cross-entropy loss like the InfoNCE loss. (Equation 2.2)

Nevertheless, SimCLR needs a large 4 ∼ 8k batch size to incorporate enough
negative samples to achieve good performance. Contrastive methods tend to work
better with larger negative instances since, likely, a bigger amount of negative
instances may cover the underlying distribution more efficiently and thus give a
better training signal. In SimCLR, the negative keys are from the same batch
and updated end-to-end by back-propagation. Since the GPU memory size limits
the batch size, the scalability factor with this method remains an issue. Indeed,
in its original implementation SimCLR required 32 to 128 TPU v3 cores to train
a ResNet-50 with a batch size of 4096.
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2.2.2 MoCo_v2 : The Memory Bank and momentum update

Momentum Contrast (MoCo; Chen et al., 2020 [3]) has proposed a solution to
this issue by introducing a separate dictionary queue known as a memory bank.

Figure 2.3: MoCo_v2 builds upon the identical structure of Figure 2.1 while solv-
ing the collapse problem. The encoder fθ and a projection head gθ are trained by
pairing an embedded query q to a dictionary of embedded keys using a contrastive
loss. The dictionary is a wide FIFO queue accumulating batches of projection k
utilized as negative K− in the contrastive loss. The bottom branch is updated by
a momentum update, with the top branch avoiding the intractable computational
cost of computing the backpropagation over the very long queue. This method
enables the use of a large and consistent memory bank of past projection k as
negative examples.

The dictionary is structured as a large FIFO (First-In-First-Out) queue ac-
cumulating a large number of projection k (figure 2.3) that are used as negative
K− in the equation 2.2 (The sum in the denominator).As opposed to SimCLR,
where the two branches in the illustration designate the identical network (pa-
rameterized by θ), MoCo breaks the network into a query network (top line)
characterized by θ and a momentum (key) network (bottom line) characterized
by ξ. The query network is updated by stochastic gradient descent, while the
momentum network is updated based on an exponential moving average of the
query network weights. The use of a momentum network enables MoCo to takes
advantage of the past projections as negative instance for the contrastive loss.
The following equation represents the exponential moving average of the query
network weights:

ξ ← mξ + (1−m)θ (2.3)

In the equation, m ∈ [0, 1] is the momentum coefficient and is set practice
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very close to 1 (eg. 0.999). Here, ξ indicates the weights of the encoder for
negative samples, and θ indicates the weights of the encoder for positive samples.
The momentum update avoids the intractable computational cost of computing
the backpropagation over the very large queue. Relative to SimCLR, MoCo
v2 manages to both decrease the batch size (from 4096 to 256) allowing the
framework to run on a typical 8-GPU machine and improve the performance.

2.2.3 BYOL & SimSiam : The asymmetry breaking

In another recent line of work, BYOL (Grill et al., 2020 [13]) and SimSiam (Chen
et al., 2021 [37]) have shown that it is possible to solve the collapse problem by
only introducing asymmetry in the two branch structure without changing the
original cosine similarity loss (equation 2.1).

Figure 2.4: BYOL builds upon the same structure of Figure 2.1 while solving the
collapse problem. The model parameters are trained by minimizing the row-wise
cosine similarity between qθ(Q) and K. Indeed, it has been shown that the added
projector qθ is the essential component of this method.(Chen et al., 2021 [37])
Inspired by MoCo_v2 (2.3) the bottom branch is updated by the momentum
average of the top branch. The bottom branch being not updated by back-
propagation, it is referred to as stop-gradient.

Unlike most popular contrastive learning-based approaches, BYOL and Sim-
Siam do not use negative pairs. As depict in figure 2.4, BYOL use the momen-
tum network concept of MoCo, adding an MLP qθ (also mentioned as predictor)
to predict P from K. BYOL compute the cosine similarity error between the
l2 − normalized prediction P and target K rather than a contrastive loss. In
SimSiam, the authors empirically challenge the necessity of the momentum en-
coder for preventing collapsing in BYOL. They advocate that only the predictor
layer and the stop-gradient operation are critical. In BYOL, the stop-gradient
is defined since the momentum encoder isn’t explicitly updated by gradient de-
scent but by a momentum update. Unlike BYOL but like SimCLR their method
directly shares the encoder’s weights between the two branches. The stop-grad
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consists of not upgrading by backpropagation one of the asymmetric branches.

2.2.4 BarlowTwins : The innovative loss function

Apart from all presented techniques that introduce asymmetries between the two
branches (figure 2.1), BarlowTwins (zbontar et al., 2021 [2]) distinguishes itself
by its innovative loss function.

Figure 2.5: BarlowTwins build upon the identical structure of Figure 2.1 while
solving the collapse problem. Unlike the other contrastive approach, the Bar-
lowTwins loss function bypasses these trivial solutions by design. Its objective
computes the cross-correlation matrix among the embeddings of a pair of equal
networks filled with transformed versions of a batch of instances and makes this
matrix converge to one. It makes the embedding vectors of transformed ver-
sions of instances similar. Furthermore, it minimizes the redundancy among the
elements of these vectors.

It does not need any asymmetric mechanisms like momentum encoders, stop-
gradients, or prediction networks. The trivial solution is avoided through the
design of the loss itself. Like the other methods, BarlowTwins uses a joint em-
bedding of transformed images Q and K, respectively. The loss function is cal-
culated on a correlation matrix, namely C between the two normalized output
Q and K of the twin network along the batch dimension :

Cij ,
∑

b qb,ikb,j√∑
b (qb,i)

2
√∑

b (kb,j)
2

(2.4)

where b indexes the batch sample and i, j index q and k output vectors. C
is a squared matrix with dimension the size of the output vectors. Its values are
included within −1 (perfect anti-correlation) and 1 (perfect correlation)

Then the loss function LBT is defined as followed :
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LBT ,
∑
i

(1− Cii)2︸ ︷︷ ︸
invariance term

+λ
∑
i

∑
j 6=i
C2ij︸ ︷︷ ︸

redundancy reduction term

(2.5)

where λ is a positive constant trading of the effect of the two terms of the loss.
The first term is the invariante component. It strives to equalize the diagonal
components of the cross-correlation matrix to 1, making the embedding invariant
to the transformation applied. The second term is the redundancy reduction.
It decorrelates the several vector’s elements of the embedding by equalizing the
off-diagonal components of the cross-correlation matrix to 0. The decorrelation
produces the effect of decreasing redundancy between the output so that embed-
ded representations do not include redundant information about the instance. A
problem that occurs with non-parametric entropy estimators such as InfoNCE
(equation 2.2) is their trend to fall into the curse of dimensionality. Indeed, they
are evaluated accurately only in a low-dimensional setting and demand a sub-
stantial amount of examples. On the contrary, BarlowTwins can estimate the
variability of the embedding from a much smaller batch size and on very large-
dimensional embeddings. It is worth noting that BarlowTwins does not normalize
the embeddings along the feature dimension as it is the usual method for losses
using cosine similarity. Specifically, the features vectors do no longer stay on the
unit ball (MoCo; Chen et al., 2020 [3], SimCLR; Chen et al., 2020 [12], BYOL;
Grill et al., 2020 [13]).

In the rest of this work, we will use MoCo and BarlowTwins as two different
backbones of our Robust multimodal contrastive learning framework. We choose
these two frameworks out of the others because first, they are computationally
efficient (does not require colossal batch size), and secondly, they embed very
different concepts. While both avoid the trivial solution problem, Barlow twins
use a unique loss and MoCo, a performant asymmetric method.

2.3 Multimodal framework

Learning general multimodal representations from pictures paired with sentences
is crucial for vision-and-language (V&L) tasks. In order to achieve this purpose,
several pre-trained V&L models have been introduced recently, motivated by the
large-scale pre-training and task-specific fine-tuning methodology found in both
computer vision and natural language.

All the V&L pre-training methods aim at producing image-text joint rep-
resentation from BERT-like objectives. They heavily rely on the self-attention
mechanism of Transformers (Vaswani et al., 2017 [38]) to learn pair representa-
tions that are properly contextualizing both modalities. The principal distinction
among these models comes from the pre-training strategies, the image embedder,
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Figure 2.6: A Visual comparison of conventional V&L architectures. Each modal-
ity of the image-text pair is feed into its respective encoder. The image and text
embedding are then fed to modality interaction modules. The principal distinc-
tion between these models comes from the choices of pre-training strategies, the
image embedder, and the cross-modality mechanism.

and the cross-modality mechanism. LXMERT (Tan et al., 2019 [39]) and ViL-
BERT (Lu et al., 2019 [40]) adopted a two-stream approach which consisted of
two separate transformer blocks on vision and language embeddings and a third
fusion transformer block for cross-modality. UNITER (Chen et al., 2019 [41])
and VisualBert (Li et al., 2019 [42]) employed a single stream of transformer to
learn image-text embedding jointly.

To be specific, the figure 2.6 illustrates the structure of the large majority of
the V&L models. Given a text-image pair, both modalities are encoded through
their respective encoders, and afterward, their cross-modal representation is com-
puted through either a single-stream or a two-stream transformer.

Emanuele et al., 2021 [43], have shown that single and dual stream model
mechanism are on similar when evaluated on downstream tasks. However, the
embedding layers are essential in a model’s final performance.

For a long period, most of the V&L models were using a heavy pre-trained
object detector (Faster-RCNN; Ren et al., 2015 [44]) as visual embedder. It
extracts the region of interest (RoIs) for a given image and computes the spatial
location of its bounding box. Another common approach (X-LXMERT; Cho et
al., 2020 [45], Pixel-BERT; Huang et al., 2020 [46]) was to use the output feature
grid of convolutional neural networks such as ResNets (He et al., 2016 [47]).
However, both these visual embedder methods contribute to the largest portion
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of the model computation. The weaknesses of holding a massive visual embedder
are frequently ignored in academic practices. Indeed, the region features are
saved beforehand the training stage to reduce the weight of feature extraction.
However, these limitations restrict the real-world deployment as the query on the
fly has to face a slow extraction process.

2.3.1 ViLT : The linear projection of a patch

In order to solve this bottleneck, ViLT (Kim et al., 2021 [4]) uses a linear projec-
tion that operates on image patches as a visual embedder. Indeed, recent work
(Dosovitskiy et al., 2020 [25]) proved that adopting a naive linear projection of
a patch is efficient to embed pixels before inputting them inside transformers.
ViLT is a single stream convolution-free V&L model that achieves competitive
performance while significantly reducing the inference. Unlike the other V&L
model that uses BERT as a transformer, ViLT uses ViT (Dosovitskiy et al., 2020
[25]) as a cross-modal transformer.

Figure 2.7: ViLT overview. A text is tokenized into tokens, while an image is
split into patches and linearly projected. The embedded representation of both
modalities is concatenated together with their position. Furthermore, a special
token for each modality tclass and vclass is added to the sequence. The sequence
is then fed into a ViT transformer. In addition to the representation of the
all sequence ZD a joint-representation CLS of the all sequence is computed by
pooling the output of the encoder. See equation 2.6 for more details

This Master Thesis will use ViLT as a multimodal architecture due to its
little inference time and competitive performance. Indeed, we need the shortest
inference time since we will attack the pixel and word-level spaces.

ViLT structure is illustrate in fgure 2.7.
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t̄ = [tclass ; t1T ; · · · ; tLT ] + T pos

v̄ = [vclass ; v1V ; · · · ; vNV ] + V pos

z0 =
[
t̄+ ttype ; v̄ + vtype ]

ẑd = MSA
(

LN
(
zd−1

))
+ zd−1, d = 1 . . . D

zd = MLP
(

LN
(
ẑd
))

+ ẑd, d = 1 . . . D

CLS = tanh
(
zD0 Wpool

)
(2.6)

ViLT is a simple V&L architecture that uses a lightweight visual embed-
der and a single stream approach. It consists of a succession multiheaded self-
attention (MSA) layer and an MLP layer.1

The input text t consist of L words from the English Vocabulary |V| em-
bedded to t̄ ∈ RL×H with a word embedding matrix T ∈ R|V |×H and a location
embedding matrix T pos ∈ R(L+1)×H 2. An additional special token tclass is added
to the embedded list t̄. The input image I ∈ RC×H×W is divided into a sequence
of Patches. The 2D patches are flattened v ∈ RN×(P 2·C) where (H,W ) is the
resolution of the initial image, C is the number of channels, (P, P ) is the resolu-
tion of each image patch, and N = HW/P 2 is the resulting number of patches.
Afterwards, v is embedded into v̄ ∈ RN×H by linear projection V ∈ R(P 2·C)×H

and location embedding V pos ∈ R(N+1)×H . An additional special token vclass is
added to the embedded list v̄.

The modal embedding vectors ttype,vtype ∈ RH are added to their analogous
vision and language embeddings, then are concatenated into a combined sequence
z0. The vector z is computed by D-depth transformer layers up until the last
sequence zd. CLS is a pooled representation of the entire multimodal input
and is computed by applying linear projection Wpool ∈ RH×H and hyperbolic
tangent on the first index of the sequence zD. In this work, we denote CLS as
the joint representation of the entire image-text pair. The joint representation
will be the element we will contrast through our contrastive methodology.

2.3.2 ViLT : The Pre-Training tasks

Originally, ViLT was pre-trained with two regularly used V&L objectives: masked
language modeling (MLM) and Image text matching (ITM). (MLM).

Image-Text Matching (ITM) In ITM, the aligned image is randomly substi-
tuted with a distinct image with the probability of 0.5. The CLS is projected
by an ITM head made of a unique linear layer. It output a binary class that

1The unique distinction between ViT and BERT is the location of layer normalization (LN).
The layer normaliyation appears before MSA and MLP in ViT and after in BERT.

2For both modality, the positions are standard learnable 1D position embeddings
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tells whether or not the image matches the text. We denote the output score as
gθ(CLS). Then a binary cross-entropy loss is computed as ITM loss:

LITM(θ) = −E(t,I)∼D [y logθ(CLS) + (1− y) log (1− gθ(CLS))]
)

(2.7)

where t is the text and I is the corresponding image. Plus, motivated by the
word region alignment objective in Chen et al. 2019 [41], ViLT’s authors have
design a word patch alignment (WPA) that estimates the matching score between
two subsets of zD : zD

∣∣
t
(textual subset) and zD

∣∣
v
(visual subset). They use the

inexact proximal point method for optimal transports (IPOT) (Xie et al., 2020
[48]). For example, given a word token it can computes the alignment score with
all the patch of the images.

Masked Language Modeling (MLM) The objective aims is to predict
a randomly masked word tmasked with mask indices m ∈ NM 3 based on their
neighboring words t\m 4 and all image patch V . A word t is randomly mask with
the probability of 0.15. The MLM loss is mesured as the negative log-likelihood
loss for the masked tokens as followed :

LMLM(θ) = −E(t,I)∼D logPθ
(
tm | t\m, I

)
(2.8)

where θ is the trainable parameters and D is the training set. We will use the
ITM-MLM pre-trained ViLT model as the backbone of our contrastive framework.

2.4 Contrastive learning in Multi-modal settings

In this project, we propose to extend the contrastive approach in the multi-
modal settings while using adversaries as augmented views. We believe that
pre-training a V&L model by adversarial training on a multimodal contrastive
framework will yield a more generalized and robust joint representation of image-
text pairs. Specifically, a V&L model pre-trained with our RMCL and fine-tuned
on a downstream task should be more robust to adversaries and have better
zero-shots performance.

In this current project, we test the following assumption by extending MoCo
and BarlowtTwins framework in the multimodal setting while using adversaries as
augmented views. It is worth noting that our RMCL framework could be applied
to any contrastive methods presented so far. In both frameworks, the architecture
is divided into two branches.5 In MoCo, the two branches are asymmetric, while

3M is the number of masked tokens, and m is the set of masked indices.
4Notation for : t\m = {t1, . . . , ti−1, [ MASK ], ti+1, . . . , tL}
5Strictly speaking, BarlowTwins under our settings could be represented as a single branch.

However, for the sake of consistency in the notation, we will keep the two branch representation.



2. Background 19

Figure 2.8: RMCL overview under MoCo settings. An Image-text pair is fed into
a ViLT encoder, and a pooled vector CLS represents the joint representation of
all multimodal input. The joint representation is projected used in the contrastive
loss. The RMCL objective is then attacked on the fly independently in the pixel-
space and in the words-space. The attacked joint embeddings q̃I and q̃T are then
contrast with the dissimilar clean joint embeddings k−

in BarlowTwins, they share the same weights. Indeed, in section 2.2 we have seen
that in MoCo the bottom branch is updated by the moving average of the top
branch weights following the equation 2.3 while a regular SGD-based optimizer
updates the top one. In contrast, the two branches of BarlowTwins are updated
by an SGD-based optimizer. We use the MoCo notation for both methods and
call the top branch the query network and the bottom branch the key network.
In both methods, a batch of Images-text pairs from a dataset is fed into the query
and key ViLT encoders.

As illustrate in the figure 2.8 CLS refers to the pooled representation of
the whole multimodal input (see equation 2.6). The joint representation CLSq
and CLSk are then fed into their respective Moco or BarlowTwins projector gθ.
Note that the illustration 2.8 shows our framework build on top of MoCo. We
designate the output of the encoder the ’joint representations’ and the projector’s
output the ’joint embeddings’. In general, the query embedding is q and the
key embedding is k. The representations are employed for downstream tasks,
and the embeddings are fed to the loss function of the Multimodal MoCo and
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the multimodal BarlowTwins. In moco, the batch of k’s embeddings are saved
systematically on the memory bank and used as negative pairs K−.

Given an image-text pair {Ii, Ti}, we denote q̃I as the joint Embeddings of
the pair after image attack and q̃T as the joint Embeddings of the pair after text
attack. We refer k+ as the joint embedding of the same pair not attacked and k−
as the joint embedding of dissimilar pairs not attacked. Our Robust Multimodal
InfoNCE loss with MoCo settings is then defined as follow :

LRMinfoNCE =
∑

q̃∈{q̃I ,q̃T }

− log
exp

(
q̃ ∗ k+/τ

)
exp

(
q̃ ∗ k+/τ

)
+
∑

K− exp
(
q̃ ∗ k−/τ

) (2.9)

where τ is a temperature hyper-parameter. The first term of the sum aim to pull
together the joint-embedding of a given pair and its counterpart attacked in the
pixel space while pushing apart dissimilar clean pairs. The second term does the
same but for the joint-embedding of the pair attacked in words space. Under the
MoCo setting, this is illustrated in the figure 2.9. The algorithm of the MoCo
implementation can be found in the annex.

Figure 2.9: Geometrical representation of the optimization of the LRMinfoNCE .
The projected representation qi and ki are 128-dimensional vectors L2 normal-
ized. By optimizing the loss we are pulling the attacked joint-representation q̃Ii
and q̃Ti closer the original joint-representation vector q̃i and pushing apart all
the dissimilar joint-representation vector kj 6=i. Note that the in BarlowTwins
the vectors are not L2 normalized as discuss in section 2.4
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Similarly, the Robust Multimodal BarlowTwins loss is defined as follow :

LRMBT ,
∑

C∈{CI ,CT }


∑
i

(1− Cii)2︸ ︷︷ ︸
invariance term

+λ
∑
i

∑
j 6=i
C2ij︸ ︷︷ ︸

redundancy reduction term


CIij ,

∑
b q̃
I
b,ikb,j√∑

b

(
q̃Ib,i

)2√∑
b (kb,j)

2

CTij ,
∑

b q̃
T
b,ikb,j√∑

b

(
q̃Tb,i

)2√∑
b (kb,j)

2

(2.10)

2.5 Augmentation

Initially, data augmentation was a hack to make the supervised model more
robust. In contrastive learning, it’s the central ingredient. Data augmentation
might serve as a proxy for what happened in real life. Indeed, Humans are
like agents navigating in the words observing objects in various circumstances,
and different transformations have been applied to their viewpoint. The data
augmentation used in contrastive learning is different compared to the one used
in self-supervised learning. For instance, aggressive color distortion is essential
in computer vision contrastive methods (Chen et al., 2020 [12]). The intrinsic
setting of contrastive methods may exploit the shortcut of overfitting on the color
histogram instead of learning the richer information. The contrastive methods
compare an augmented view of the same image. Indeed, not all dogs have the
same color histogram, but in contrastive learning, all dogs’ individual images will
have the same color histogram. Consequently, the data augmentation in self-
supervised learning is carefully designated to maintain their instance identities
so that the transformed sample from the same instance can still be retrieved.

Although existing contrastive learning literature discussed their boosts on the
standard generalization (Dosovitskiy et al., 2014 [49]; Oord et al., 2018 [33]; Wu
et al., 2018 [34]), many others attest that the feature consistency is valuable for
robustness too (Ziyu et al., [50]; Kim et al. 2020 [21]). One interpretation of
adversarial brittleness could be related to the non-smooth feature space near in-
stances. Indeed, slight input perturbations can produce notable feature variations
and may even change the labels. Reinforcing agreement during training w.t.r per-
turbations has been therefore attested to help adversarial robustness instantly.
Indeed, Kim et al. 2020 [21] have shown that using adversarial perturbation to
create “hard" positives in the contrastive loss is effective to enhance the robust-
ness. Ziyu et al., [50] further investigate the performance of robust contrastive
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learning by analyzing three candidate algorithms. Their first option (A2A) was
to attack the two branches and compute the similarity on different adversaries
of the same image. Their second option (A2S) was to attack only one branch
and compute the similarity between an adversary and an augmented view from
the same images. Finally, their third option (DS) was to use both approaches
simultaneously. They empirically show that A2A was overly disruptive and only
degrading the feature quality. Indeed, they point out that a standard SimCLR
architecture improves in terms of robustness while keeping similar performance
in terms of accuracy when trained in A2S and DS settings.

The above considerations compose our hypothesis that multi-modal con-
trastive learning could be an excellent option for adversarial pre-training. In this
work, we will use adversaries as augmented views in our multi-modal contrastive
learning framework. To be specific, we will compute the similarity between an
attacked pair and a clean pair. We will compare the performance of this attacked
view with regular augmented views. We refer to Robust multi-modal contrastive
learning (RMCL) when using adversaries and multi-modal contrastive learning
(MCL) when using standard data augmentation.

In the following subsection, we will present the types of images and text
augmentation used with our baseline MCL (subsection 2.5.1) and the adversaries
for our RMCL methods.(subsection 2.5.2)

2.5.1 The clean views

Images : RandAugment

SimCLR proposes multiple forms of data augmentation for images such as crop
and resize, rotate, Gaussian blur, color jittering, and many other image views.
These augmentations have been carefully selected to suits any contrastive ap-
proach. Indeed, BYOL and BarlowTwins use the same augmentation parameters
for image augmentations. Inspired by these methods, we will use the same type
of image augmentation.

Text : EDA and PEGASUS

It is more challenging to construct text augmentation, which does not alter the
semantics of a sentence. Indeed, a single token can invert the meaning of a sen-
tence. Fang et al. 2020 [51] improve the performance of BERT on various down-
stream understanding tasks by using contrastive learning with back-translation
(Sennrich al., 2015 [52]) and easy-data-augmentation (EDA ;Wei et al., 2019[53]).
In this work, we will use EDA (Easy Data Augmentation; Wei & Zou 2019) and
PEGASUS (Zhang et al., [54]) as augmented strategies for text. Initially, PE-
GASUS is a sequence-to-sequence pre-training objective tailored for abstractive
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text summarization. However, it has shown great performance when fine-tuning
for paraphrasing.

Specifically, each sentence will be augmented five times with EDA, and five
times with PEGASUS then we will rank them based on their semantic similarity
with the original sentences. To achieve this, we compute for every augmented
sentence it’s sentence features vector with SentenceBert (Reimers et al., 2019
[55]) and compute a similarity score by computing the cosine similarity between
the original sentence vector, and it’s augmented versions. Once the ranking
is established, we select a different augmented view for each training epoch in
descending order.

2.5.2 The attacked views

In RMCL we use adversarial training as an adequate regularization to enhance
model generalization. It is achives by minimizing the following objective :

min
θ

E({Ii,Ti})∼D

[
max
δimg∈S

LRMCL (g(fθ ({Ii + δimg, Ti})))
]

(2.11)

where {Ii, Ti} is an image text pair from the dataset D, gθ is the linear projector,
fθ is the encoder, δimg is an image perturbation from a set S of allowed pertur-
bations. It is a label-free reformulation of the saddle point problem in adversarial
training presented by Madry et al., 2017 [23]. It is composed of an inner maxi-
mization problem and an outer minimization problem. The inner maximization
problem aims to obtain an adversarial variant of a given pair {Ii, Ti} that max-
imizes the loss. On the other hand, the outer minimization problem attempts
to obtain the model parameters that minimize the “adversarial loss” produced
by the inner attack problem. When pre-training V&L architectures, the location
embeddings are employed to encode the location of image patches and sub-word
tokens. Our adversaries alter the image’s pixel space and the word’s space, let-
ting the rest of the elements fixed. Moreover, because of the diverse aspects of
image and text modalities, we suggest attacking one modality at a time.

Images : Projected Gradient Descent

Madry et al., 2017 [23] have shown that for images, the inner maximization prob-
lem in equation 2.11 can be solved accurately by PGD, a conventional method for
constrained optimization. In their works, they demonstrate that a PGD-based
attack is the ultimate first-order adversary for images. Robustness against the
PGD adversary yields robustness against all first-order adversaries. Inspired by
VILLA (Gan et al., [56]), which uses PGD based attacks to improve their V&L
model robustness, we will also use PGD attacks to generate our image view ad-
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versary. However, our work differs from VILLA since they use a PGD-based
attack on the features space while we use PGD in the input space (Pixel space).

To be specific, let us take a pixel-wise perturbation δimg, PGD do the follow-
ing step (with step-size α) in each iteration:

δimg,t+1 = Π‖δimg‖≤ε
(
δimg,t + αg (δimg,t) / ‖g (δimg,t)‖2

)
(2.12)

where g = ∇δimgLRMCL (g(fθ ({Ii + δimg, Ti}))) is the gradient ot the loss
w.r.t. δimg, and Π‖δimg‖≤ε makes a projection onto the ε−ball. After the PGD
attack qi becomes q̃Ii

Text : Geometric inspired attack

In NLP, adversarial training in the input space has been challenging, as existing
natural language adversarial attacks are too slow to generate adversarial exam-
ples on the fly during training (Alzantot et al., 2018 [57]; Ren et al., 2019 [58]).
Meng et al., 2020 [24] has proposed a solution to this issue by presenting a
geometry-inspired attack for generating natural language adversarial examples.
Furthermore, Meng et al., 2021 [22], has shown the effectiveness of this method
through the improvement of the pre-trained language model BERT by leveraging
contrastive learning with their attack. The geometric-inspired attack is an effi-
cient adversarial attack that enables word-level adversarial training. Inspired by

Figure 2.10: An illustration of one iteration in Geometry Attack for multimodal
contrastive loss. Refer to section 2.5.2 for more details.

their methods that improve robustness without labels, we also use the Geometry
attack to generate natural language adversarial examples.

The intuition behind the attack is to iteratively replace words in the original
texts such that in each repetition the replaced word increases the contrastive loss
as much as possible. To be specific, consider a text example Ti with its corre-
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sponding images Ii,their joint embedding qi and and LRMCL (g(fθ ({Ii, Ti}))) as
`i, we then have :

1. Compute the gradients of `i with respect to qi . It allows us to know in
which direction we should move the joint embedding qi to increase the
contrastive loss `i. We have the gradient vector vqi = ∇qi`i

2. Solve the gradients of `i w.r.t input word embeddings of Ti. This steps let us
take advantage of the gradient of each tokens of the tokenized text sample
Ti. Therefore, we can understand which word has the most influence in
the computation of `i. The words wt are then ranked in descending order
based on their gradient score.

3. We pick the words wt with the highest impact on the `i and we derive a syn-
onym set of maximum M element Qt =

{
w0
k, w

1
k, . . . , w

M
k

}
.The candidate

set of synonym is initiated with N closest synonyms according to the cosine
similarity between wt and every other word in the vocabulary . Following
Jin et al. 2020 [59], we filter out semantically different words from the
candidate set by discarding candidate words of which the cosine similarity
of their embeddings between the embeddings of wt below a threshold ε.

4. Once we have the synonym set of the given selected word wt we compute the
joint-embeddings vectors

{
q̃i1 , q̃i2 , · · · , q̃iM

}
. We then compute the delta

vector rij = q̃ij − qi. The projection of rij onto vqi is pij =
rij ·vqi
‖qzi‖

. We

select the candidate word wtm in Ti where m = argmaxj

∥∥∥pij∥∥∥. In other
words, wtm results in the largest projection pij onto vqi

5. Finally we replace wt with wtm in the sentence Ti and we have qi ← q̃im . We
repeat step 1-4 N iteratoin, where N is a hyperparameter of the method.
We expect `i to increase in each iteration.

Figure 2.10 illustrates an iteration of our attack. This attack can be easily
implemented in a batched fashion, making it possible to generate adversarial ex-
amples on the fly during training. After the geometric-inspire attack qi becomes
q̃Ti
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Methodology

This chapter describes our methodology for pre-training V&L models with our
Robust Multimodal Contrastive Learning task. The rest of this chapter is orga-
nized as follows: Section 3.1 presents the pre-trained ViLT architecture and the
parameter of our MoCo and BarlowTwins RMCL frameworks. Furthermore, we
review the parameter of the augmentation and the adversaries. Afterward, We
delineate the pre-training tasks in section 3.2 as well as the downstream methods
in section 3.3. Finally we explicit the implementation details in section 3.4

3.1 The models Architecture

A diagram of our RMCL framework is given in Figure 2.8. We use the pre-
trained ViLT-B/32 (Kim et al., 2021 [4]) as encoders. It takes a concatenation of
image and text inputs as depicted in figure 2.7. To be more specific, ViLT uses
a 32 ×32 patch projection inspired by ViT (Dosovitskiy et al., 2020 [25]) as a
visual embedder and the bert-base-uncased tokenizer to tokenize the text inputs.
The concatenated sequence of visual and textual features are fed in the ViLT
encoder, and the encoded sequence is pooled to get a single vector CLS that
represents the pair. The joint representationCLS is a 768 dimension vector. The
CLS vector is then projected by either the MoCo head either the BarlowTwins
head and the q and k embedding vectors resulting are used in their respective
contrastive loss (equation 2.9 and equation 2.10). The BarlowTwins projector
network has three linear layers, each with 8192 output units, while the MoCo
projector has two linear layers with respectively 768 and 128 output units. As
we discuss in section 2.2 the infoNCE is prone to the curse of dimensionality,
implying a low-dimensional setting. In the MoCo mechanism, the negative keys
k− are maintained in a queue, and only the queries q and positive keys k+ are
encoded in each training batch. Following Chen et al., 2020 [3], we use a queue
size of 65536, a momentum update parameter of 0.999 and the default parameter
τ = 0.07. Following Zbontar et al., 2021 [2] we use a trade-off hyperparameter
λ = 5 · 10−3 for BarlowTwins loss function. For our baseline MCL we use the
same image augmentation than Zbontar et al., 2021 [2] while we use PEGASUS
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and EDA for text augmentation (see discussion in section 2.2). In the Robust
MCL settings, we use PGD as attacked on the pixel space and the geometric-
inspired attack in words space. The hyperparameter of PGD (equation 2.12) are
the ε−Ball and attacked rate α. The hyperparameter of the Geometric-inspired
attack is the number of synonym candidates M and the number of iterations
maxloop. We will conduct in chapter 4 a study to select the best adversarial
hyper-parameters. For all experience, we will keep the original optimizer of ViLT
(Kim et al., 2021 [4]).

3.2 The pre-training tasks

RMCL and MCL are both pre-trained with either MoCo or BarlowTwins settings
with the same image-text datasets. Initially we wanted to use four datasets with
our pre-training task: Microsoft COCO (Lin et al., 2014 [60]), Visual Genome
(VG) (Krishna et al., 2017 [61]), SBU Captions (SBU) (Ordonez et al., 2011 [62]),
and Google Conceptual Captions (GCC) (Sharma et al., [63]). Table 1 reports
the dataset statistics. However, due to time constraints, we only pre-trained on
COCO for a single epoch instead of 10 as intended.

Dataset #Images #Captions Caption Length
Conceptual Caption 2,68M 2,68M 10.66 ± 4.93

SBU 780K 780K 15.0 ± 7.74
COCO 82K 414K 11.81 ± 2.81

Visual Genome 86K 4,32M 5.53 ± 1.76
Total 3,63M 8,20M

Table 3.1: Statistics of pre-training datasets.Caption length is the length of tokens
from pre-trained bert-base-uncased tokenizer.

3.3 The downstream tasks

We evaluate the robustness and accuracy performance of our RMCL task on
ViLT with two generally explored types of vision-and-language clssification tasks:
NLVR2 (Suhr et al., 2018 [26]) and VQAv2 (Goyal et al., 2017 [27]). Futhermore
we evaluate the retrieval image and text tasks with COCO and Flickr30K (F30K;
Karpathy et al., 2015 [28]). The table 3.2 shows statistics about the downstream
tasks. It is worth mentioning that NLVR2 and Flickr30K are out-of-domain
datasets, while COCO and VQAv2 are in-domain. Indeed, with out-of-domain
tasks, the dataset is not the same as for pre-training. For the classification and
retrieval tasks, we follow the original ViLT (Kim et al., 2021 [4]) by fine-tuning
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for ten epochs with a batch size 256 for retrieval tasks and VQAv2 and 128 for
NLVR2. The statistic of these downstream tasks are displayed in table 3.2.

While we process the evaluation on the downstream tasks, we gauge the
robustness of ViLT-pre-trained with RMCL by attacking the images and text
inputs independently. We study the robustness when either attacking a single
modality or either attacking both modalities independently. We compare the
robustness and accuracy performance of ViLT with and without being pre-trained
with RMCL.

Task Image Source #Images #Captions
VQAv2 COCO 204K 1.1M
NLVR2 Web Crawled 214K 107K

Image-Text Retrieval COCO 92K 460K
Flickr30K 32K 160K

Table 3.2: Statistics on the datasets of downstream tasks

3.4 The implementation Details

Following ViLT (Kim et al., 2021 [4]), we use for the classification tasks a down-
stream head composed of two-layer MLP of hidden size 2*768. Furthermore,
for the retrieval tasks, we initialize the similarity score from a fine-tuned ITM
head. The ITM head is a single linear layer that projects the pooled output fea-
ture CLS of size 768 to a binary class. We finetuned VQA, NLVR2 and IRTR
with Flickr30k on 10 epochs and IRTR with COCO on 2 epochs. Indeed, the
fine-tuning of IRTR with COCO is computationally intence and due to our time
constrain we reduce the number of epochs.

Question Answering VQAv2 uses pairs of an image and a question and asks
for answers. A usual practice is to transform the problem into a classification
task with 3,129 answer classes (Yu et al., 2019 [64])). We fine-tune on VQAv2
for ten epochs with a batch size of 256 using a binary cross-entropy loss.

Natural Language for Visual Reasoning The goal in NLVR2 is to decide
whether a natural language description is true w.r.t the given image pair. Unlike
the pre-training setting there are two input image. Various strategies have been
suggested.1. We will use the pair methods following ViLT (Kim et al., 2021
[4]), OSCAR (Li et al,. 2020 [65]) and VinVL (Zhang et al., 2021 [66]). In the
Pair setup, the triplet input is changed to a two pairs (Image1, Question1) and
(Image2, Question1) formulation. Each pairs are then fed into the encoder. The

1UNITER (Chen et al., 2019 [41]) presented three settings: pair, triplet, and pair-biattn.
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NLVR2 projector takes the concatenation of the two pooled joint representations
CLS as input and outputs a binary prediction.

Retrieval Tasks Retrieval tasks use as well the CLS joint representation. In
V&L, the task consists of text and image retrieval. For example, image retrieval
consists of identifying an image from a collection of sentences describing it. It
is similar to text retrieval, where the task is to identify a text from a pool of
images. Due to time-constrained, we report only the evaluation performance
without attacks. Indeed, the evaluation on IRTR takes up to 1 day without
attacks. The correlation score is achieved through the fine-tuned of the ITM
head, especially the section that calculates the true-pair logits. Fifteen randomly
selected negative texts are used, and the model is tuned with cross-entropy loss
that maximizes the scores on the true image caption.

Computation Our models are implemented based on PyTorch lightning 2. We
used several PyTorch lightning plugins to speed up training, such as mixed pre-
cision (Micikevicius et al,. 2017 [67]), Distributed data-parallel (Li et al,. 2020
[68]), and a data loader with several workers. All our models have been pre-
trained on 8 GeForce RTX 3090 and fine-tune on 2 GeForce RTX 3090. Gradient
accumulation (Ott et al., 2018 [69]) is also applied to reduce multi-GPU commu-
nication overheads.

2https://www.pytorchlightning.ai/



Chapter 4

Results and Discussion

In this section, we present and discuss the various experience and their results.
We start by conduction in section 4.1 a hyper-parameter selection for the attacks
by attacking the pre-trained ViLT-B/32 model while doing an evaluation on the
downstream task NLVR2. We select some geometric-attacked samples and ob-
serve the semantic conservation. Once the parameter for each attack is selected,
we study the characteristic of the RMCL pre-training process on ViLT in section
4.2. Furthermore, The evolution with respect to the optimizer steps of the loss,
the distances between positive and negative pairs as well as the attacks charac-
teristic are reviewed. Finally, in the section 4.3 we present the robustness with
NLVR2 and the image and text retrieval performance under different settings.

4.1 Adversaries HyperParameter Selection

In this section, we conduct an adversaries hyperparameter selection by attacking
the evaluation process of ViLT on NLVR2. To be specific, we use the ViLT-B/32
finetuned on NLVR2 for ten epochs and attack the binary-cross-entropy loss of
the tasks during evaluation. The original accuracy on the task is 74.48% without
attack.

4.1.1 Image: Projected Gradient Descent

The PGD ensure imperceptibility of the perturbation δimg limiting its l∞-norm ε.
A larger ε makes the attack stronger, resulting in a higher error rate of the model,
but also makes the perturbation more perceptible to the human. In order to have
a comparison, we illustrate in Figure 4.1 the distribution of the average norm of
the row pixel from the NLVR2’s images. Then, we report the NLVR2 accuracy
and success rate 1 for a range of ε−Ball {1e−2, 8e−3, 5e−3, 3e−3, 2e−3, 1e−3, 5e−4}2

1Sucess rate refers to the change rate of the algorithm prediction when attacked versus when
not attacked

2Much more parameters have been tested. We do not plot them for rendering purposes

30



4. Results and Discussion 31

and attacked rate α {8e−2, 5e−2, 2e−2, 8e−3, 5e−3, 1e−3} with a fixed number of
5 PGD’s iterations.

Figure 4.1: Distribution of the average norm of the row pixel from the NLVR2’s
images

Figure 4.2: Distribution of the average norm of the row pixel from the image
perturbation δimg for the parameters : α = 0.05 and ε = 0.005. The steps
correspond to the iteration of the PGD. The average norm perturbation is an
order of magnitude smaller than the average norm of the images.

Figure 4.3: NLVR2 test-accuracy in function of PGD’s hyper-parameters

Figures 4.3 4.4 4.6 depict the expected behaviors of the hyperparameters.
Indeed, when the ε−Ball is more restrictive, the model accuracy is higher, the
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Figure 4.4: Success rate of the PGD attack on the NLVR2 accuracy in function
of PGD’s hyper-parameters

Figure 4.5: Average norm of δimg from the PGD attack on the NLVR2 in function
of PGD’s hyper-parameters

success rate is lower and obviously the norm of the perturbation δimg is smaller.
Similarly, when the parameter α is higher, the model accuracy drops, the success
rate increased and the δimg perturbation gets more aggressive.

Regarding the result in Figure 4.3-4.6 ε = 0.005 and α = 0.05, seem to
be fair enough choices. Indeed, the algorithm is strongly impacted in terms of
accuracy with a drop of 65% while having perturbation of an order of magnitude
smaller than the original images (Figure 4.3-4.2).To be specific, our choice of
PGD parameters leads to an accuracy of 10.4%, a success rate of 64.5%, and
an average norm perturbation of 0.003. We display an example of the clean
image, the perturbation added to the image and the resulting attacked images in
figure 4.6. The attack have successfully change the model prediction while being
almost imperceptible. We can note that the attack is dense, and almost every
pixel seems to be attacked. Nevertheless, on the attacked image on the left, we
can only identify very few disturbed pixels highlighted with a red box. it is also
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fascinating to observe that the attacks reveals the 16x16 image patches

Figure 4.6: An example of adversarial attacks using projected gradient descent.
PGD results in dense perturbations, in which almost every pixel is perturbed. It
is fascinating to note that we can distinguish in the perturbation the different
patches of the images. We add on the left image a red box that highlights some
visible perturbation.

4.1.2 Text: Geometric inspired attack

The geometric-inspired attack fools natural language models with high success
rates while only replacing a few words. By design, the attack ensures a words-
replacement strategy that aims to keep the semantics meaning of the sentence.
We report the NLVR2 accuracy (Figure 4.7) and success rate (Figure 4.8) for a
range of number of synonym candidateM {10, 8, 5, 2, 1} and maximum number of
iteration maxloop {10, 8, 5, 2, 1}. Furthermore, we illustrate in Figure 4.9 the rate
of words changed per sentence in the function of the aforementioned list of hyper-
parameters. Outside the performance metrics, the computation time and memory
requirement need to be taken into account. We haven’t explicitly measured these
metrics however our experiments have shown that above a maximum number of
candidate of 10 the algorithm requires a prohibitive amount of CPU-memory.

Figure 4.8 depicts the expected behaviors of the hyperparameters. Indeed,
when the number of synonym candidates M is higher, the success rate of the
attack is higher. In fact, the synonyms will have a lower similarity score with
the original word that may induce a higher mismatch with the original pair,
thus a higher gradient of the contrastive loss. Furthermore, when the number of
iteration gets higher, the loss is expected to increase (see discussion in section
4.1). Based on the results and the memory issue, we have selected a number
of synonyms M = 5 and maxloop = 10. Indeed, the choice of the parameters
ensures a high success rate ∼ 48% with a low rate of words changed ∼ 20% while
not requiring excessive CPU-memory usage. Indeed, the cosine similarity matrix
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Figure 4.7: NLVR2 test-accuracy in function of Geometric inspired attack’s
hyper-parameters

Figure 4.8: Rate of words changed in a sentences for the Geometric attack on
NLVR2 for various hyper-parameter

Figure 4.9: Success rate of the Geometric attack on NLVR2 for various hyper-
parameter

between words is computed in the function of the max number of synonym M.
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Some examples of the attack with the chosen parameter are illustrated in Figure
4.10.

Figure 4.10: Example of image-text pairs attacked in the word-space with the
Geometric-inspired. In each example, the attack has successfully changed the
prediction. The words in green are the original, and the ones in red the adversary
changed. Parameter attacks : M = 5 and maxloop = 10

4.2 pre-training RMCL BarlowTwins and MoCo

Once the parameters for the Geometric-inspired and the PGD attacks are se-
lected, we conduct a full RMCL pre-training task with MoCo and BarlowTwins
settings on ViLT-B/32 and COCO datasets. We run the pre-training task for
one epoch on a single 8 GPUs node with a batch size of 128 for 1 days for each
setup. Originally, we planned to run the pre-training on SBU-COCO-VG-CC for
10 epoch however, due to time constrain, we reduce the pre-training to 1 epochs
on only COCO. The following results serve as a proof of concept.

In the following, we study the losses evolution for both methods in subsection
4.2.1. We verify in subsection 4.2.2 that the distance between positive pairs is
decreasing while it’s increasing between positive and negative pairs. Finally, we
briefly look at some adversaries metrics in the subsection. 4.2.3.
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4.2.1 Loss

MoCo

The Figure 4.11 represent the evolution of the two-term of the robust multimodal
MoCo loss from the equation 2.9. We remark that the loss w.r.t q̃I and the loss
w.r.t q̃T decreased significantly although attacked. Furthermore, we observe that
both losses are very similar. These observations demonstrate that our algorithm
is learning from our task.

Figure 4.11: Robust multimodal InfoNCE loss evolution during 1 epochs on
COCO dataset. The two component of the loss in equation 2.9 are illustrated.

BarlowTwins

Figure 4.12 depicts the evolution of the four terms of the robust multimodal
BarlowTwins loss from the equation 2.10. We observe that both invariance term
for q̃I and q̃T decreased significantly and reach after ∼ 4k steps a loss of almost
500. However, we notice that the initial invariance loss w.r.t q̃T is higher than
the initial loss invariance w.r.t q̃I . It implies that the geometric attack have
a slightly higher impact on the BarlowTwins loss than the PGD. Futhermore,
the invariance loss plots haven’t meet yet any characteristic of a steady state
as opposed to the MoCo losses Figure 4.11 . It suggest that BarlowTwins may
benefits more from an increases of epoch than MoCo on COCO dataset only. The
same study hold for the two redundancy reduction term. However, we discern
that the redundancy losses are much higher than the invariance losses and reach a
plateau after 3.5k steps. From these observations, we conclude that our algorithm
is learning from our task despite being attacked.
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Figure 4.12: Robust multimodal BarlowTwins loss evolution during 1 epoch on
COCO dataset. The four component of the loss in equation 2.10 are illustrate.

4.2.2 Distances

In this subsection, we depict the similarity relation between the positive and the
negative joint-embedding. We use the standard L2 euclidean-distance as well as
the cosine similarity angle. The cosine similarity has the advantage over the L2

euclidean-distance of being more adapted for high dimensional vectors. Indeed,
Moco has 128 dimensions L2-normalized embedding vectors while BarlowTwins
have 8192 dimension non-normalized embedding vectors. (see discussion in sec-
tion 2.2.4).

MoCo

The Figures 4.13 and 4.14 delineate the evolution of respectively the positive
and negative L2 and cosinesim distances during the pre-training with the robust
multimodal Moco framework. We observe that all the graphs from both figures
4.13-4.14 overshoot within the two first thousand steps. This is due to the random
initialization of the Moco memory bank. We can argue that once the queue is
filled with batches of negative pairs k− the algorithm starts its learning process.
Indeed, this effect can also be seen in the two first thousand steps of the losses
in figure 4.11. Apart from this observation, we see that our task is inducing the
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expected behavior discuss in figure 2.9. The distance between positive sample
(respectively q̃I with k+ and q̃T with k+ are decreasing w.r.t L2 euclidean-
distance and converging to 1 w.r.t cosine similarity (Figure 4.13). Furthermore,
the distance between the positive and negative pairs sample (respectively q̃I
with the queue K− and q̃T with the queue K− are increasing w.r.t L2 euclidean-
distance and converging to 0 w.r.t cosine similarity (Figure 4.14). Once again,
we observe that the contrast task induce similar pulling and pushing effect on q̃I
and q̃T .

Figure 4.13: Evolution of the similarity score between positive joint-embedding
samples q̃I or q̃T and K− when pre-training ViLT with the robust multimodal
MoCo frameworks. The similarity score is either compute with the cosine simi-
larity or the L2 norm.

BarlowTwins

Under the BarlowTwins settings, we observe similar results. The distance be-
tween positive sample (respectively q̃I with k+ and q̃T with k+ are decreasing
w.r.t L2 euclidean-distance and converging to 1 w.r.t cosine similarity (Figure
4.13). Similarly to the loss analysis (Figure 4.12), the positive distance converges
slower than in the Moco case. It reinforce our hypothesis that BarlowTwins un-
der our robust multimodal framework would benefits more from an increase of
epochs than MoCo. If we look in detail, we note that the positive distance of q̃I
with the original joint-embedding is slightly bigger than the positive distance of
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Figure 4.14: Evolution of the similarity score between positive and negative joint-
embedding samples q̃I or q̃T and K− when pre-training ViLT with the robust
multimodal MoCo frameworks. The similarity score is either compute with the
cosine similarity or the L− 2 norm.

q̃T . It is worth mentioning that we haven’t presented the figure of the negative
distance for BarlowTwins however the negative distance is behaving as in the
MoCo settings.

4.2.3 Adversaries

Finally, the the Figure 4.16 and 4.17 illustrate some relevant adversaries metrics.
We notice that despite the decrease of loss, the average word change rate per
sentence is slightly oscillating around the constant rate of 17.8% for both MoCo
and BarlowTwins. This corresponds to the same word change rate discuss in
our hyper-parameter search in section 4.1.2. Similarly, the average row-wise
norm δimg is oscillating around 3.6e3% for MoCo and 2.75e3% for BarlowTwins.
Suprisingly, the average word change rate of MoCo (Figure 4.16) seems to slightly
decreased over time. It would be interesting to observe it’s evolution in the next
few epochs.
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Figure 4.15: Evolution of the similarity score between positive joint-embedding
samples q̃I or q̃T and K− when pre-training ViLT with the robust multimodal
BarlowTwins frameworks. The similarity score is either compute with the cosine
similarity or the L− 2 norm.

Figure 4.16: Evolution of the average row-wise norm δimg and the word change
rate when pre-training ViLT with the robust multimodal MoCo frameworks.

4.3 Fine-tuning BarlowTwins and MoCo

We conduct a robustness evaluation on a classification task NLVR2. As discussed
3.3, NLVR2 is an out-of-domain methods. Furthermore, we evaluate performance
on image-text retrieval (IRTR) on the in-domain dataset COCO and out-of-
domain dataset Flickr30K after fine-tuning.
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Figure 4.17: Evolution of the average row-wise norm δimg and the word change
rate when pre-training ViLT with the robust multimodal BarlowTwins frame-
works.

4.3.1 Robustness : NLVR2 Out-of-Domain

The table 4.1 displays the results of the robustness evaluation of NLVR2. ViLT-
B/32-NLVR2-paper is the accuracy claim in the original ViLT paper (Kim et
al., 2021 [4]), and ViLT-B/32-NLVR2-reimp is our re-implementation. Specif-
ically, we finetune the pre-trained ViLT-B/32 on NLVR2 for 10 epochs. The
reimplementation matches the original finetune accuracy. MoCo-NLVR2 and
BarlowTwins-NLVR2 are ViLT-B/32 pre-trained on COCO with our RMCL
methods with respectively BarlowTwins and MoCo and finetuned on NLVR2
for 10 epoch. We run four types of experience for each model ; (1) Only at-
tacking the pixel space with PGD, (2) Only attacking the words space with the
geometric-inspired attack, (3) attacking both image and text space, and (4) mak-
ing no attack. For each experiment, we report the final test accuracy as well as
the success rate of the attack. The attack has been conducted with the exact
same adversaries hyper-parameter used in our pre-training stage; for Geometric-
inspired attack M = 5 and maxloop = 10 and for PDG ε = 0.005 and α = 0.05,

NLVR2
Model PGD GEOM PGD+GEOM NONE

succ acc succ acc succ acc succ acc
ViLT-B/32-NLVR2-paper / / / / / / / 75.7
ViLT-B/32-NLVR2-reimp. 65.9 10.1 45.0 34.0 61.9 9.8 / 75.6

MoCo-NLVR2 58.6 13.9 39.0 36.7 60.3 10.1 / 72.9
BarlowTwins-NLVR2 63.0 11.1 40.7 36.9 64.9 10.5 / 75.0

Table 4.1: Robustness evaluation on out-of-domain NLVR2 dataset with different
pre-trained models.

We observe that both MoCo and BarlowTwins get better robustness against
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the PGD attack anf the Geometric-inspired attack. It is interesting to observed
that MoCo outperform BarlowTwins on the robustness against PGDs attacks
(improvement of 3.8% for moco and 1% for BarlowTwins) while BarlowTwins
slightly outperform MoCo on the robustness against Geometric-inspired attacks
(improvement of 2.6% for moco and 2.8% for BarlowTwins). We explain this
behaviour through the comparison of the MoCo loss (Figure 4.11) versus the
BarlowTwins loss (Figure 4.11). Indeed, as discussed in subsection 4.2.1, Bar-
lowTwins seems that it will benefit more from an increase of epochs than MoCo.
BarlowTwins’s losses delineate a linearly decreasing trend around the end of the
first epoch, where MoCo seems to reach a plateau. It suggests that BarlowTwins
is delayed compare to MoCo in it’s performance. Specifically, if we increase the
number of epochs, we expect BarlowTwins to improve its overall performance
until it ultimately reached better PGD’s robustness than MoCo. In parallel, the
asymmetries of robustness performance illustrated in the table correlated with
our delayed argument suggest that the PGD’s robustness is more challenging
to obtain than geometric’s robustness. Indeed, even thus BarlowTwins have a
slower learning process than MoCo it already outperforms it’s geometric’s ro-
bustness performance. This reasoning is supported by the comparison between
the success rate of PDG (Succ = 65.9%) versus Geometric-inspired attacks (Succ
= 55.3%) in table 4.1. Apart from these observations, the general accuracy of
our model is moderately smaller than the original implementation. This is ex-
pected behavior. Indeed, as discussed in section 1.1 adversarial training helps
model gain in robustness and generalization but at the cost of slightly lowering
the task-specific accuracy.

4.3.2 Robustness : VQAv2 In-Domain

The table 4.2 presents the results of the robustness evaluation of VQAv2. We
evaluate the robustness on the validation set instead of the test set as initially
done in ViLT (kim et al., 2021[4])paper. The evaluation on the test set require to
submit our score on the VQAv2 website, thus we use the validation set. There-
fore, we can not compare our re-implementation to the paper claimed accuracy
on VQAv2. However, we assume out re-implementation to have identical perfor-
mance than in the original paper.

VQAv2
Model PGD GEOM PGD+GEOM NONE

acc acc acc acc
ViLT-B/32-NLVR2-reimp. 80.1 69.1 68.7 83.5

MoCo-NLVR2 81.0 73.1 71.8 83.2
BarlowTwins-NLVR2 81.0 73.3 72.5 83.4

Table 4.2: Robustness evaluation on in-domain VQAv2 dataset with different
pre-trained models.
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We discern that both MoCo and BarlowTwins get better robustness against
the PGD attack and the Geometric-inspired attack. The results of robustness on
VQA shows that the improvement of robustness on PGD are similar to those from
NLVR2. However, we observe that the improvement on the geometric inspired
attack is higher on VQAv2 than on NLVR2. As discussed in section 3.4, the
implementation of NLVR2 is unlike the pre-training settings ; it required two
pairs (Image1, Question1) and (Image2, Question1). It could be then expected
that the robustness on NLVR2 is harder than on VQAv2 since the implementation
of VQAv2 is similar to the pre-training settings. Additionally, VQAv2 is an in-
domain classification task where NLVR2 is out-of-domain. Finally, the results
suggest that BarlowTwins’s framework get higher performance on VQAv2 than
MoCo’s frameworks.

4.3.3 Evaluation : IRTR COCO & IRTR Flickr30K

The tables 4.3 and 4.4 lay out the evaluation of the performance on image and
text retrieval on COCO (in-domain) and Flickr30K (out-of-domain). As discuss
in section 3.4, in image and text retrieval, we sample 15 negative text or images,
and we compute the similarity score of each pair. The target of the task is to
give the highest similarity score at the original positive pair and lower scores at
the negative pairs where one modality has been replaced by a negative sample.
We represent the R@1, R@5, and R@10 scores for each model 3. We use the
same pre-trained model as in the previous experience and finetune them either
on IRTR-COCO either on IRTR-Flickr30K.

COCO
Image Retrieval Text Retrieval

Model R@1 R@5 R@10 R@1 R@5 R@10
ViLT-B/32-reimp 66.1 92.8 97.2 79.0 95.8 98.4

MoCo-IRTR-COCO 69.4 94.9 98.4 83.8 98.0 99.8
BarlowTwins-IRTR-COCO 71.3 95.8 98.6 85.2 97.2 99.4

Table 4.3: Evaluation image and text retrieval on in-domain COCO dataset with
different pre-trained models.

The table 4.3 confirms our intention to reinforce the relation between image
and text from the same pair with our robust contrastive task. Indeed, BarloTwins
and MoCo shows significant improvement on both retrieval tasks with COCO.
However, this improvement are almost nonexistent on Flickr30K (table 4.3). It
may shows that pre-training our frameworks only on COCO for a single epochs
does not yet build a generalized joint representation enough. Indeed, the match-
ing performance do not get significantly better outside the pre-trained datasets.

3R@K corresponds to whether the ground truth is included among top K similarity score.
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Flickr30K
Image Retrieval Text Retrieval

Model R@1 R@5 R@10 R@1 R@5 R@10
ViLT-B/32-reimp. 70.0 92.6 96.4 88.0 98.0 99.8

MoCo-IRTR-Flickr30K 69.5 91.8 96.7 86.8 98.0 99.4
BarlowTwins-IRTR-Flickr30K 70.0 92.5 96.8 87.8 98.2 99.6

Table 4.4: Evaluation image and text retrieval on out-of-domain Flickr30K
dataset with different pre-trained models.

4.4 Out-of-the-box MLM visualization

Figure 4.18: Out-of-domain Image text pair.

The figures 4.18 and 4.19 illustrate an example of a cross-modal alignment.
The transportation plan of the IPOT (see section 2.3.2) displays a heatmap for a
selected text token. Each square tile describes a patch, and its opacity designates
how much quantity is carried from the highlighted word token.The figure 4.18
represent an out-of-domain image-text pair and the figure 4.19 illustrate the
results for ViLT-MoCo and ViLT-BarlowTwins and ViLT-B/32.

The figure 4.19 suggests that our robust multimodal contrastive task rein-
force the image and text matching. Although, ViLT-B/32 has a great ability
to match the different patches to a selected token, both ViLT-MoCo and ViLT-
BarlowTwins reinforce its image-text matching intensity. Indeed, we can observe
that the patches transported from the selected token are much more opaque that
in the standard pre-trained ViLT model.
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Figure 4.19: Visualizations of transportation plan of word patch alignment with
three different pretained ViLT model.



Chapter 5

Discussion & Conclussion

In this thesis, we present RMCL, a robust multimodal contrastive learning task.
We verify the efficacy of our proposed method by leveraging two well-known
contrastive frameworks MoCo (Chen et al., 2020 [3]) and BarlowTwins (Zbontar
et al., 2021 [2]) in a robust multimodal setting. We used a pre-trained V&L model
ViLT as an encoder and compare it’s robustness and accuracy performance with
and without our RMCL methods. Before applying our pre-trained methods on
ViLT, we conduct a hyperparameter selection by attacking the NLVR2 evaluation
process of ViLT. Once our hyper-parameter is selected, we start pre-training ViLT
with RMCL. Due to time constraints, we only used the COCO dataset with one
epoch for pre-training all of our settings. However, it already gives a decent
overview of our task behaviors. Specifically, during the training phase, our RMCL
task successfully learns to pull together the joint-embedding of an image-text pair
with its attacked counterpart while pushing apart the dissimilar joint-embedding
pairs. Next, we have evaluate the robustness and accuracy performance of our
RMCL tasks on ViLT with an out-of-domain (NLVR2) and in-domain (VQAv2)
classification tasks. The results suggest that our methods lead the ViLT model to
get better robustness against text and image attacks while having a slightly lower
accuracy than the standardly-trained ViLT. Although the improvement is minor,
it suggests that our task behave correctly. Indeed, we can observe in tables
3.2 and 3.1 that COCO is only slightly bigger than the downstream datasets.
Futhermore, improvement of robustness in both in-domain and out-of-domain
dataset confirms that our robust contrastive optimization drives the model to get
a more generalized and robust joint representation.

Next, we evaluate the performance of the RMCL pre-trained ViLT on image
and text retrieval. We observed a significant improvement with our methods over
the standard ViLT on an in-domain dataset. However, the retrieval performance
on the out-of-domain dataset is almost nonexistent, although competitive. It
points out that our methodology leads to more generalized joint representation
so that the image and text relation gets enhanced. However, the generalization
doesn’t go yet outside the pre-training datasets. We advocate that pre-training
on only MoCo for a single epoch is not yet enough for a broad generalized joint
representation. Finally, our experience demonstrates that BarlowTwins achieves
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usually better overall performance over MoCo under our RMCL settings. Fur-
thermore, the losses analysis (4.12) suggest that BarlowTwins should benefits
more than MoCo from an increased of epochs.

The above considerations and experiences compose our conjecture that the
joint representation of an image text pair benefits from the robust optimization
of a multimodal contrastive learning

In the future of this project, we will extend the size of the dataset and the
number of epochs for pre-training as it was initially planned. To be specific we will
pre-trained our model for 10 epochs on Microsoft COCO (Lin et al., 2014 [60]),
Visual Genome (VG) (Krishna et al., 2017 [61]), SBU Captions (SBU) (Ordonez
et al., 2011 [62]), and Google Conceptual Captions (GCC) (Sharma et al., [63]).
We will then conduct the same sets of experience on the downstream tasks. We
will as well conduct a full pretraining on our MCL baseline and compare their
generalization and robustness performances.

In parallel, we will examined the uses of stronger and synonymous more per-
ceptible adversaries. Indeed, as discuss in section 2.5 the contrastive tasks in
general benefits more from strong augmentation provided that it keeps the over-
all semantic of the sample. It may also be possible that it benefits the robustness
performances.

Apart from theses improvements, we advocate that doing the image-text
matching (ITM) pre-training methods afterward, having done our RMCL tasks,
will be a great benefit. Indeed, when our methods is further fine tuned on re-
trieval tasks we obtain better results on both image and text retrieval task with
in-domain dataset. Our methods not only make the the joint-representation in-
variant to perturbation it also reinforce the image and text relations. This though
is supported by our experience on transportation plan of word patch alignment.
Indeed, the image-text relation within a same par is visually strengthened.
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Appendix A

Algorithm

Algorithm 1: Robust Multi-Modal Contrastive Learning (RMCL)
under MoCo settings

Inputs: Set of Image-Text pairs {(I, T )}, batch Size N , temperature τ ,
ε-Ball, number of synonym M , max step PGD I, max step Geom J
momentum m, queue of negative joint embeddings K−,
structure of query and key multimodal encoder fθ, fξ
structure of query and key projector gθ, gξ

Forward pass
for all x ∈ Minibatch B = {(Ii, Ti)}Ni=1 do

# Generate Instance Wise Attack for Image :
for t= 1...I do

Ĩi
t+1

= ΠB(Ii,ε)

(
Ĩi
t

+ α sign
(
∇q̃iLRMInfoNCE

(
q̃ti , k

+
i , k

−
i

)))
end
# Generate Instance Wise Attack for Text :
for t= 1...J do

T̃ ti = Geometrical-based-attack(Ti, fθ, gθ,M)
end

# Joint representation and joint embedding of
(
Ii, T̃i

)
:

˜CLS
q
i = Pooler

(
Encoder

(
(Ii, T̃i)

))
= Pooler

(
fθ
(

(Ii, T̃i)
))

q̃i
T = MLP ( ˜CLS

q
i ) = gθ( ˜CLS

q
i )

# Joint representation and joint embedding of
(
Ĩi, Ti

)
:

˜CLS
q
i = Pooler

(
Encoder

(
(Ĩi, Ti)

))
= Pooler

(
fθ
(

(Ĩi, Ti)
))

q̃i
I = MLP ( ˜CLS

q
i ) = gθ( ˜CLS

q
i )

end

Calculate LRMinfoNCE =
∑
q̃∈{q̃I ,q̃T }

− log
exp(q̃∗k+/τ)

exp(q̃∗k+/τ)+
∑

K− exp(q̃∗k−/τ)
Backward pass
# SGD update: query network
θ ← θ − η · ∇θLRMinfoNCE

(
q̃I

(i:i+N); q̃T
(i:i+N); k

(i:i+N)
+ ;K−

)
# Momentum update: key network
ξ ← mξ + (1−m)θ
# update dictionary
enqueue(queue, k) # enqueue the current minibatch
dequeue(queue) # dequeue the earliest minibatch

A-1
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