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Abstract—Locally linear embedding (LLE) is a classic method
of nonlinear dimensional reduction and it has become more and
more attractive to researchers due to its ability to deal with
large amounts of high dimensional data and its non-iterative
way of finding the embeddings. However, several problems in the
LLE algorithm remain open, such as it’s inevitable ill-conditioned
eigenproblems. A modified version of the algorithm (MLLE) have
been developed in order to improve the stability of LLE using
multiple reconstruction weights. This paper comprehensively
reviews and discuss LLE and its modified version. Their stability
with various data and hyper parameters is discussed as well
as their performance of topology preservation and classification.
With numerical examples we will show how MLLE exceeds LLE
stability in complex cases and when the parameters are weakly
chosen.

I. INTRODUCTION

Nowadays, scientists are faced with the necessity of ex-
ploring high-dimensional data more often than ever since
information impacting on life and the evolution of mankind
is growing extremely quickly. Dimensionality reduction is an
important operation for dealing with multi-dimensional data.
Most real data lie on a low dimensional manifold embedded in
a high dimensional space. Frequently, high-dimensional data
bear a lot of redundancies and correlations hiding important
relationships. Therefore, data analysis can be used to eliminate
these redundancies and reduce data complexities. A dimen-
sionality reduction algorithm maps high dimensional data into
a low dimensional space, revealing the underlying structure in
the data. One such common dimension reduction technique is
known as principal components analysis (PCA) [1]. PCA is
limited in that it requires that the data lie on or near a linear
subspace, which is an assumption that is often not satisfied in
the real world. When the linearity assumption is not met, we
turn to nonlinear dimensional reduction techniques, which do
not require the linearity assumption and have been successfully
in various applications. [2] [3] [4].

Recently, there have been advances in developing effective
and efficient algorithms, such as isometric mapping (Isomap)
[5], locally linear embedding (LLE) [6], Laplacian eigenmap
(LE) [7], Hessian LLE [8] and local tangent space alignment
(LTSA) [9]. All those methods can reduce the redundancies
while retaining the primary characteristics. LLE is an effective
nonlinear dimensionality reduction algorithm proposed first
by Roweis in 2000 [6]. LLE is an unsupervised non-iterative
method, which avoids the local minima problems plaguing

many competing methods (e.g., those based on the expectation
maximization (EM) algorithm). Compared to the other meth-
ods, the LLE algorithm requires only two parameters to be
determined. The two parameters that have to be specified are
the intrinsic dimension d and the number of nearest neighbors
K. Improper values of these parameters greatly influence the
results. On one hand, a large value of the intrinsic dimension
d amplifies noise effects while a low value leads to overlaps
in mapping results (excessively reduced) [11]. On the other
hand, a low number of K nearest neighbors cannot make the
reconstruction to reveal the global features of the original data
[10], while a large K causes a manifold to lose the nonlinear
feature and behave like the traditional PCA [1].

However, the original LLE has some intrinsic drawbacks.
LLE was found to be sensitive to the amount of the initial
data [12]. When there is insufficient data (poorly-sampled
manifolds), local characteristics are lost. An excessive data
amount results in an incomplete reconstruction and a long
computational time. In the presence of noise, LLE is not
anymore effective. When Gaussaen noise is added to each data
point, the local linearity assumption becomes violated and LLE
no longer handles the dimension reduction well. Furthermore,
LLE is not robust against outliers. To overcome these limita-
tions, some efforts have been recently made to develop various
extensions of the original LLE. These include Robust Locally
Linear Embedding (RLLE) which was developed to handle
outliers [13], a version of LLE based on Hessian eigenmaps
to handle high-dimensional data (HLLE) [8], an incremental
version of LLE to preserve topology (ILLE) [14] and Locally
Linear embedding with Additive Noise (LLEAN) which is
designed to handle data that was corrupted by additive noise
[15].

It was also reported that LLE may not be stable since
the constrained least squares (LS) problem involved for de-
termining the local weights may be ill-conditioned [16]. In
recent years, some extensions of LLE are also proposed to
obtain more reasonable reconstruction weights. To avoid the
ill-conditioning problem in solving the least squares problem,
a regularization parameter is introduced for solving the LS
problem manually [17] or automatically [18]. Wang and Zhang
(2010) [19] have proved that there are multiple sets of lo-
cal construction weights that are approximately optimal for
solving the LS problem. A recent algorithm called modified
LLE is then proposed which exploits the local geometry by



constructing multiple weights to improve the stability of LLE.
The study presents a comparison between LLE and a modified
version (MLLE) proposed by Wang and Zhang (2010) [19].
The remainder of this paper is organized as follows : In section
2 briefly review the original LLE algorithm and show how
the expected underlying manifold geometry is preserved. In
section 3 we illustrate the instability of LLE resulted from
the uncertain local weight and present the modified LLE algo-
rithm. The key observation is that if a manifold has dimension
d > 1, a single set of reconstruction weights may not be able
to determine the whole local linearity. The lack of control
on the local linearity may result in instability in numerical
embedding. In Section 4, we present the different evaluation
criteria used for the comparison between LLE and MLLE.
In Section 5, experimental results of the multi-class dataset
Fashion MNIST and its augmented version are presented.
Finally, section 6 offers conclusions and discussions.

II. A BRIEF REVIEW OF LOCALLY LINEAR EMBEDDING

In this section, we first outline the basic steps of the LLE
algorithm, then discuss about the preservation of the manifold
geometry and finally speak about the intrinsic value d and the
current way to find the optimal parameter K.

A. LLE Algorithm

LLE is an unsupervised learning algorithm. It preserves the
relationships between neighbors in manifold data and repre-
sents high dimensional data in a lower dimensional Euclidean
space. LLE maps a dataset X = {X1, X2, . . . , XN}, Xi ∈ RD
globally to a lower dimensional set Y = {Y1, Y2, . . . , YN},
Yi ∈ Rd with d < D . The algorithm has three steps:

1) Obtain the set of K nearest neighbors for each Xi.
Denote this set Ni.

2) Compute constrained weights matrix W =
(wij)i,j=1,...,n that best linearly reconstruct Xi

from its neighbors Xi ←
∑
WijXj . The optimal

weights are determined by solving the following
constrained LS problem :

min

∥∥∥∥∥∥xi −
∑
j∈Ji

wijxj

∥∥∥∥∥∥
2

s.t.
∑
j∈Ji

wij = 1

(1)

3) Compute low dimensional embedding vectors Yi ∈ Rd
best reconstructed by minimizing the cost function

min

N∑
i=1

∥∥∥∥∥∥yi −
∑
j∈Ji

wijyj

∥∥∥∥∥∥
2

s.t.
N∑
i=1

yi = 0,
1

N

N∑
i=1

yiy
T
i = I

(2)

The two constraints make the embedding cost function
be invariant to translations and rescaling. To find the

matrix Y = [yi, . . . , yN ] under this constraints, a new
sparse symmetric and positive semi-definite matrix M
is constructed based on the matrix W : M = (I −
W )T (I − W ). Now the LLE embedding problem is
transformed into the computation of the bottom d non-
zero eigenvalues of matrix M.

Let us denote matrix Gi = [. . . , xj − xi, . . .]j∈Ji , we can
rewrite the constrained LS problem (2) as

min ‖Giw‖ , s.t. wT1ki = 1 (3)

where 1ki denotes the ki -dimensional vector of all 1’s. This
problem is not stable if GTG is singular (has zero eigenvalues)
or nearly singular (has relative small eigenvalues). Typically,
eigenvalues and/or eigenvectors of a particular matrix are very
sensitive to small perturbations of the matrix which means it is
hard to accurately derive the eigenvectors, which correspond
to the smallest nonzero eigenvalues. This issue is called ill-
conditioned eigenproblem.

In that case it’s suggested [17] to solve the regularized linear
system with a regularization constant γ � 1 :(

GTG+ γ‖G‖2F I
)
y = 1k, w = y/1Tk y (4)

One factor that results in the instability of LLE is that the
learned linear structure, by using single weight vector at each
point, is brittle. LLE may give a wrong embedding even if all
weight vectors are well approximated in a high accuracy. It
is imaginable if Gi is rank reducible since multiple optimal
weight vectors exist in that case. It’s from this observation
that Wang and Zhang [19] prove that though the exact optimal
weight vector may be unique, multiple approximately optimal
weight vectors exist.

B. Manifold Geometry

The basic assumption of LLE is that the data is well-
sampled and lies on or near a smooth non-linear manifold
of lower dimensionality d � D. There exists then a linear
mapping consisting of translation, rotation, and rescaling that
maps the high dimensional coordinates of each neighborhood
to global internal coordinates on the manifold. In the case of
noisy data and outliers, the assumption of local linearity fails
and LLE will provide a very poor embedding.

C. Optimal number of nearest neighbors

The original LLE has two parameters to be adjusted: the
number K of nearest neighbors for each data point and the
dimensionality of the embedded space, d (intrinsic dimension-
ality of the data manifold or,equivalently, the minimal number
of degrees of freedom needed to generate the original data).
Visualization means that d is fixed(it is either 1, 2 or 3),
so that the only parameter to be estimated is K. The reason
for choosing the right K is that a large number of nearest
neighbors causes smoothing or elimination of small-scale
structures in the manifold. In contrast, small neighborhoods
can falsely divide the continuous manifold into disjointed sub-
manifolds. [10]



Most extensions of LLE differ in the neighborhood selection
since it is the only nonlinear step of the LLE. Some are using
other distance metrics [20] [21] [22] and others use other rules
to select neighbors [23] [13]. Each method aims to solve an
intrinsic drawback of LLE such as robustness to outliers and
noise.

In this study we will use the automatic hierarchical [?]
procedure for finding Kopt. The main steps are summarized
as follows:

1) Calculate ε(W) for each K,K ∈ [1,Kmax] according
to Eq.1 where Kmax will be arbitrary chosen

2) Find all minima of ε(W) and corresponding K ’s which
compose the set S of initial candidates.

3) For each K∗ ∈ S, run LLE and compute a quantitative
measure.

4) Select Kopt according to :

Kopt = argi min
K∗i

(
1− ρ2pxDy

)
(5)

This quantitative measure called residual variance (Tenen-
baum et al. 2000 [5]), illustrates how well the distance
information is preserved. It is a measure of general global
topology preservation. The hierarchical method for finding
the optimal number of nearest neighbors has the major ad-
vantage of computing the eigenvectors only NS times where
NS << Kmax. It is clear that this method is faster than the
straight forward one that computes all the steps of LLE for
each K ∈ [1,Kmax].

D. Estimating the intrinsic dimensionality of data

Many studies proposed different strategies to estimate the
intrinsic dimension d [28] [29]. In this study we are more
interested in the visualization of the embedded data in lower
spaces. Therefore we will choose d = 2 for most of the
following experimentations.

III. MODIFIED LOCALLY LINEAR EMBEDDING

The LLE algorithm has a major problem when the number
of neighbors is greater than the number of input dimensions
as the matrix defining each local neighborhood becomes rank-
deficient. LLE solves this by using an arbitrary regularization
parameter as in equation 4, which may or may not yield an
optimal solution. MLLE addresses this regularization problem
by using multiple weight vectors in each neighborhood. In
this section we will illustrate the instability of LLE with a toy
example and summarize the algorithm of MLLE. Finally, we
will compare the computational complexity of both algorithm

A. Illustration of the instability of LLE

Outside the consideration of noise and outliers, LLE does
not behave well in datasets with high curvature and/or non-
convexity property. To illustrate this argument we consider
a synthetic dataset 1 generated in a non-convex domain to
highlight the essential improvement of MLLE versus LLE.

Fig. 1. 3-dimensional S curve with 1000 data points and its 2D em-
bedding using LLE and MLLE. This toy example illustrates the distortion
behaviour of LLE with non-convex and high curvature data. MLLE Solves
the regularization problem of LLE by using multiple weight vectors in each
neighborhood and therefore increasing the stability of the standard LLE.
Embedding parameters : Kopt = 10, d = 2

B. MLLE Algorithm

According to Wang and Zhang paper [19] the modified
locally linear embedding algorithm can be summarize as
follows :
Algorithm 1: Modified Locally linear Embedding
Result: d-dimensional embedding {t1, . . . , tN}
for each i = 1, · · · , N do

Determine Ni = {xj , j ∈ Ji} of xi, i /∈ Ji
Compute the regularized solution wi(γ) by (4)
Compute the eigenvalues and eigenvectors
Set ρi =

∑ki
j=d+1 λ

(i)
j /

∑d
j=1 λ

(i)
j

end
Sort {ρi} to be {ρπi

} in increasing order
Set η = ρπdN/2e

for each i = 1, · · · , N do
Set si by (6)
Set Vi =

[
v
(i)
ki−si+1, . . . , v

(i)
ki

]
, αi =

∥∥1TkiVi∥∥
Construct Φ by using Wi = wi(γ)1Tsi + Vi

end
pick up the eigenvector matrix corresponding to the

2nd to (d+ 1)th smallest eigenvalues
Set T = [u2, . . . , ud+1]

T

The number Si of approximation optimal weight vectors is
determined by

si = max
`

{
` ≤ ki − d,

∑ki
j=ki−`+1 λ

(i)
j∑ki−`

j=1 λ
(i)
j

< η

}
(6)

C. Complexity of both Algorithm

The complexity of the regular LLE with N training data
points of dimension D for individual steps can be expressed
as follows :

1) Finding nearest neighbors - O(D log(k)N log(N))
2) Computing reconstruction weights - O

(
DNK3

)
3) Computing bottom eigenvectors - O

(
dN2

)
where k is the number of nearest neighbors and d the output
dimension. The computational cost of MLLE is almost the
same as the one of LLE. The additional cost of MLLE comes
from the computation of the eigendecomposition of GTi Gi



and is approximately equal to O
(
N(k −D)k2

)
. In practice,

the added cost of constructing the MLLE weight matrix is
relatively small compared to the cost of stages of the nearest
neighbors and the computation of the bottom eigenvectors
because k � N .

IV. EVALUATION CRITERIA

Historically, distance preservation has been the first criterion
used to achieve a dimension reduction in a nonlinear way.
From the point of view of an ideal case, the preservation of the
pairwise distances measured in a dataset ensures that the low-
dimensional embedding inherits the main geometric properties
of the data, such as the overall shape. However, techniques
such as LLE, MLLE, LE, t-SNE reduce the dimensionality
of the data by preserving their topology rather than their
pairwise distances. Therefore, to compare the performance of
LLE and MLLE we will look at local and global topology
preservation. We will also measure the classification capability
of the embedded data obtained.

A. Topology Preservation

Spearman’s Rho Siegel and Castellan presented one of the
first measurements to estimate the topology preservation [25].
This quantitative numerical measure estimates the correlation
of rank order data. It tries to assess how well the corresponding
projection preserves the order of pairwise distances between
data points in a high-dimensional space. Spearman’s rho is
computed by using the following equation :

ρSp = 1−
6
∑T
i=1 (rx(i)− ry(i))

2

T 3 − T
(7)

where T is the number of distances to be compared, rx(i)
are the ranks of pairwise distances calculated from the original
(n-dimensional) data points and sorted in ascending order,
ry(i) are the ranks of pairwise distances calculated for the
projected (d-dimensional) data points and sorted in ascending
order. The interval of ρSp is [−1, 1]. When ρSp = 1, or
ρSp = −1 there is a perfect positive or negative correlation
between the two sets of variables. Therefore the closer ρSp is
to 1, the better the data topology is preserved in the projected
space.

Karbauskaite et al.(2007) [10] demonstrated that ρSp is
suitable to estimate the topology preservation after visualizing
the data by the LLE algorithm. To make this statement true it
is necessary to calculate rx(i) using geodesic distances with a
small number of neighbours (≤ 10 ) and Euclidean or geodesic
distances for the calculation of ry(i). Spearman’s Rho is a
local neighborhood preservation approach and can also be used
to choose the optimal k.

Tenenbaum et al.(2000) [5] used the residual variance (Equ
4) for assessing the overall quality of an embedding and is the
value commonly used to choose the optimal K. This criteria
is a global structure holding approach.

B. Classification Capability

In the case of labeled data, the classification rate reduction
gives a good measurement of the capability of classification of
the projected data. It compares the performance of classifica-
tion with and without dimension reduction. The measurement
is given by the following formula :

R =
N correct
x −N correct

y

N correct
x

(8)

where N correct
x and N correct

y define the number of correctly
classified data samples in the original and projected spaces,
correspondingly. To get this value k nearest neighbor classifier
is used with different k. The smaller the R, the better the
classification capability of the projected data.

To measure the classification quality, the f1-score is a widely
used technique that gives a measure of classification accuracy.

V. EXPERIMENTAL RESULT WITH TOYS DATASET AND
FASHION NIMST

In this section we will compare the performance of LLE
and MLLE in different aspects.

Firstly, we will use a toy dataset to experiment the research
of the optimal K number of neighbours according to local and
global measurements of topology preservation. Then we will
compute the evolution of the quality of the embedding when
increasing the number of data points.

Secondly, we will experiment LLE and MLLE on a more
complex dataset; fashion-MNIST from Zalando-research. We
will find the optimal K thanks to local topology preservation
measurement and visualise the embedding on the full dataset.
Then we will compare the classification capability of both
algorithm on the full data-set and observe their improvements
when increasing the intrinsic parameter d. Afterwards, we will
add different types of noise and rotation to the dataset in order
to observe the robustness of both algorithm in these particular
cases.

Finally, we will compare the clustering properties of both
algorithms with a convolutional neural network.

A. The Swiss roll and S-curve

To illustrate the research of the optimal parameter K, we will
use the Swiss-Roll with 1000 data points. We compute Spears-
man’s Rho and the residual variance for each K ∈ [4, 40]
for ten random generations of the Swiss-Roll and compute
the average value for each K. The optimal K gives the best
embedding. It can be quantified by the highest value ρSp and
the smallest residual variance as illustrate in the Fig. 2. We
observe that ρSp and the residual variance are correlated. They
are sufficient to find the optimal k. The Fig. 2 compares the
best embedding with the worst one according to Spearman’s
value. Generally, we observe that MLLE has a better topology
preservation measure than LLE. It is corroborate by the
visualisation of both embedding. The behaviour of the ρSp and
the residual variance for LLE and MLLE are similar, therefore
in that case the range of Kopt are almost equivalent for both
algorithm.



Fig. 2. 3-dimensional Swiss Roll and its 2D embedding using LLE and
MLLE. Both graphs show the evolution of Spearsman’s Rho and the residual
variance for each K ∈ [4, 40]. The Swill Roll has been randomly generated
10 times and the average measure was computed for each value of K. The
best embedding is obtained when ρSp is high and the residual variance small.
In average, MLLE gives a better topology preservation measure than LLE and
more smooth embedding visualization

When k is set too small, a continuous manifold can falsely
be divided into disjoint sub manifolds, and thus, the mapping
does not reflect any global properties. In contrast, if k is too
high, the algorithm will lose its nonlinear character and behave
like traditional Principal Component Analysis as in Fig. 3
(Jolliffe, 1989, [1]). Setting a high k also tends to cause a
data point to have neighbors that are actually very distant.
More intuitively, this can be seen as a short circuit.

When we variate the number of points of the S-curve dataset
(Fig. 4 ), we observe that the overall Spearman’s Rho value
increases for both algorithms. In fact if the sample density
is low, LLE and MLLE are unavoidable to derive the non-
uniform warps and folds. Both algorithms need enough nearest
neighbours to catch the non linearity of the dataset. In Fig. 4
we observe that Kopt is getting bigger as we increase the
number of points and it is smaller for MLLE. It shows the
robustness of MLLE with low density datasets.

In summary of our analysis on LLE and MLLE with toy
datasets, we conclude that MLLE regularisation is stronger

Fig. 3. 3-dimensional Swiss Roll and its 2D embedding using LLE, MLLE
and PCA on the two last eigenvectors. The number of nearest neighbours is
set high. The mapping of both LLE and MLLE behaves like a regular PCA. In
fact, when k is set too high, it causes smoothing or elimination of small-scale
structures in the manifold. The mapping loses its nonlinear character

Fig. 4. 3-dimensional S-curve with variation of data points and its 2D em-
bedding using LLE, MLLE. Both graphs show the evolution of Spearsman’s
Rho with variation of the number of data points. The measure of ρSp for
each k is the average of 10 random generations. ρSp gets higher when the
number of data points increases. The visualisation of the mapping with a very
low number of points shows how both algorithms struggle with low density
samples. In the visualisation, the low density embedding of LLE treats the
S-curve as a non-continuous manifold and maps it with almost the curvature
of an S.

than LLE to map datasets into a lower dimension embedding.
MLLE is not limited to convex and low curvature data.
Overall, MLLE preserves better the local and global topology
of the dataset regarding Spearman’s Rho and the residual
variance. Moreover, it shows a stronger performance with low
density dataset. The choice of Kopt depends on the measure
of the topology preservation. Generally, it appears that a range
of values are optimal. On the other hand, Kopt should not be
chosen too high otherwise the algorithm will lose its nonlinear
character and behave like a traditional PCA.



B. Fashion-MNIST

Fashion MNIST [27] is a dataset with 70’000 images of
clothes from Zalando in low resolution and in greyscale
(Fig.5). The images of clothes are labeled in 10 distinct classes
: T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt,
Sneaker, Bag, Ankle boot. Zalando intends Fashion-MNIST to
serve as a direct drop-in replacement for the original MNIST
dataset for bench marking machine learning algorithms.

Fig. 5. Samples from Fashion MNIST dataset.

Each sample is a 784 dimension data point (28x28 greyscale
image) with the class label. To get a better visualisation
and overcome the curse of dimensionality for classification
technique, we apply a non linear dimensional reduction.

Fig. 6. Spearsman’s Rho in function of k for MLLE and LLE for the
fashion MNIST dataset. For each k we compute 10 times LLE on the dataset
and measure the average ρSp . For the rest of the paper we will take Kopt

= 22 because it has given good performances

Fig.7, shows the embedding of a subset of 2000 data
points of fashion MNIST on the first two coordinates of LLE
and MLLE. The ten classes have 200 samples of different
elements. The embedding has been processed with Kopt = 22
and d = 2 according to the results obtained in Fig. 6. The
visualization of both algorithms shows many characteristics of
the dataset. We observe three peaks represented by trousers,
shoes and pullover labels. In fact shoes have mostly grey pixels
in the horizontal, Trouser in a thin region in the vertical and
Pullover in a big region of the vertical.

In terms of visualisation (Fig.7) and topology preservation
(Fig.6), MLLE gives better results than LLE. To proceed with
the classification using KNN, we did a 10 fold cross-validation
with a split ratio of 0.2 (training : 10’000 data points / testing
: 2’000 data points.). The classification rate reduction for
LLE and MLLE are respectively 0.141 and 0.129. The F1
measurement analysis in (Fig.8) shows better results for MLLE

versus LLE. The confusion matrix (Fig.9) shows that wrong
classification concerns the same couple of classes for both
algorithms.

Fig. 7. Images of clothes (Fig.5) mapped into the embedding space described
by the first two coordinates of LLE (top image) and MLLE (bottom image).
Each colored number represents the class label. Images of clothes have been
shown for few samples. Embedding parameters : Kopt = 22, d = 2

Fig. 8. F1 score on the embedding of the full dataset in function of K
for LLE and MLLE. A 10 fold cross validation has been done to calculate
accurately the F1 score for each K. MLLE mapping gives better classification
performance in terms of F1. Embedding parameters : Kopt = 22, d = 2

Let’s consider the performance of classification with dif-
ferent values of the intrinsic dimension d. Fig.10 shows that
both algorithms get better F1 scores with the increase of d.
Nevertheless, d is strictly upper-bounded by Kopt = 22. In



Fig. 9. Confusion matrix for the best classification situation of both
algorithms. We observe that the wrong classification concerns more or less
the same couples of classes for both algorithms. Embedding parameters :
Kopt = 22, d = 2

fact, the performance of both algorithms with respect to F1
measurements gets very similar when the intrinsic dimension
increase. Considering that our dataset is dense enough, this
result shows that MLLE is more robust for classification
than LLE when the chosen d in far from reflecting the real
intrinsic dimension of the dataset. On opposite, when d reflects
better the intrinsic dimension, both algorithms have the same
performance in terms of classification on the Fashion MNIST
dataset.

Fig. 10. F1 score on the embedding of the full dataset in function of d for LLE
and MLLE. A 10 fold cross validation has been done to calculate accurately
the F1 for each d. Both mappings give better classification performances in
terms of F1 as d gets higher. Embedding parameters : Kopt = 22, Kknn =
15

We now compare the classification performance of LLE and
MLLE with fashion MNIST under three types of noise. In
Table I we measured the F1 score and the classification rate
reduction with a KNN classifier. For every experience, the K
nearest neighbours for the classifier have been chosen in order
to get the highest F1 score. We observe in table I that both
algorithms behave similarly with noisy data. The mapping is
weaker with noisy data. Concerning the classification rate, it
depends on the classifier performance with noise. To overcome
noise, image filtering is generally used before processing.

Next we consider the class sneakers with 10 elements and
make 100 rotations of 3.6 degrees to each element of the class.
This example explores how strong both algorithms are when
applying linear transformations on a dataset with few different
items. The Spearman’s rho measure for LLE and MLLE are

Noise Type Embedding F1 classification rate
None LLE—MLLE 0.695—0.721 0.141—0.129
Salt and Paper 10% LLE—MLLE 0.677—0.711 0.170—0.132
Gaussian σ2 = 100 LLE—MLLE 0.670—0.670 0.090—0.080
Gaussian σ2 = 256 LLE—MLLE 0.500—0.489 0.090—0.130

Table I. Classification performance with noise. The classification has been
done 10 times for each noise and the average result has been plotted. The

ratio salt and pepper is 0.5 and it has been applied on 10% of the pixels of
each image. The Gaussian is centered with σ2 = 100 and σ2 = 256.

Embedding parameters : Kopt = 22, d = 2

respectively 0.94 and 1. Regarding the topology preservation
results and the visualisation of the mapping (Fig.11) MLLE
has a better performance. It is difficult for LLE to handle
rotation on different items. The perfect circle of the mapping
of MLLE in Fig.11 illustrates well the better preservation of
local linearity. In fact, MLLE is proven to preserve better local
linearity and being more stable than the original LLE.

Fig. 11. Left and right are respectively LLE and MLLE embeddings of 10
different sneakers with data augmentation. Each sneaker has been repeated
100 times with small rotations. Embedding parameters : Kopt = 22, d = 2

VI. LLE AND MLLE IN CONVOLUTIONAL NEURAL
NETWORKS

To complete our study on these two manifold methods, we
will compare the classification performance of both algorithms
with a completely different method : a convolutional neural
network. Here we will variate the intrinsic parameter d and
compute the accuracy of the classification. The CNN model
has been applied with the following properties : a first fully
connected 32 neurons dense layer with ReLU as the activation
function and a 10 softmax layer. The model is trained and
validated with respectively 48000 and 12000 data points. The
performance is evaluated on a testing set of 10000 data points.
Our CNN model has an accuracy of 0.91 when trained and
tested on the dataset without embedding. The Fig. 12 shows
the same properties than the classification with KNN (Fig. 10);
both LLE and MLLE follow the same growth pattern when
increasing the dimension. This time, LLE shows a slightly
better performance even for a weak choice of parameter (d =2).
For the following we will focus on the overall classification
results with d = 14. The table II shows how each class impacts
the overall results of the classification. As in the confusion



Fig. 12. Prediction accuracy growth according to intrinsic dimension hyper-
parameter d for LLE and MLLE. Embedding parameters : Kopt = 22

matrix in Fig. 9, we observe that the wrong classification
concerns more or less the same couples of classes for both
algorithms, which are Pullover, Shirt and Coat. In comparison,
without embedding the CNN model has a score of 0.7 for shirt
and 0.8 for Coat and Shirt.

Class Embedding precision recall F1 score
T-shirt/top LLE—MLLE 0.72—0.71 0.76—0.77 0.74—0.74
Trouser LLE—MLLE 0.98—0.99 0.94—0.94 0.96—0.96
Pullover LLE—MLLE 0.51—0.50 0.68—0.65 0.58—0.56
Dress LLE—MLLE 0.72—0.74 0.88—0.85 0.79—0.79
Coat LLE—MLLE 0.53—0.56 0.46—0.52 0.49—0.54
Sandal LLE—MLLE 0.90—0.85 0.84—0.82 0.87—0.83
Shirt LLE—MLLE 0.42—0.39 0.23—0.22 0.30—0.28
Sneaker LLE—MLLE 0.83—0.79 0.84—0.80 0.83—0.80
Bag LLE—MLLE 0.95—0.94 0.94—0.94 0.94—0.94
Ankle boot LLE—MLLE 0.86—0.87 0.92—0.90 0.89—0.88

Table II. Classification report of both algorithms. Embedding parameters :
Kopt = 22, d = 14

d Embedding Embedding time Training time F1
784 None 00:00:00 00:15:23 0.92

14 LLE 03:08:03 00:00:01 0.75
MLLE 03:10:19 00:00:01 0.74

Table III. CNN Computational time with and without embedding.
Embedding parameters : Kopt = 22, d = 14

The results obtained in table III shows that it took up to
12 times longer to complete the experience with embedding
than without it. The values itself may differ from a machine
to another but we clearly observe that classification is almost
instantaneous after embedding. It’s also interesting to observe
that the embedding time of both algorithms are almost equal
as the complexity of both algorithms are almost the same.
Even though the embedding takes a huge time, it has to be
done only once. It can allow to test and optimize faster deep
learning parameters. It means that we may want to use the
embedded version of the dataset to test several convolutional
neural network models with very fast epochs until we are
satisfied to eventually test the model with the original data.

VII. CONCLUSION AND DISCUSSION

The classic non linear reduction method LLE proved its
performance and convenience requiring only two hyperparam-
eters to be determined. However, some intrinsic drawbacks
such as its assumptions on a low curvature and convex
manifold, inevitable ill-conditioned eigenproblems and sen-
sitivity to noise restricts its application. Wang and Zhang
(2010) [19] have propose an extension of LLE called modified
locally linear embedding which propose a more reasonable
reconstruction weights to avoid the ill-conditioning problem in
solving the least square problems. In this paper, With the help
of toy datasets and Fashion-MNIST dataset, we illustrated how
MLLE exploits the local geometry by constructing multiples
weights to improve the stability of LLE. The comparison
has been shown trough measure of topology preservation and
visualisation. However, both algorithms are very sensitive to
the choice of K. When too small, a continuous manifold can
falsely be divided into disjoint sub manifolds, and thus, the
mapping does not reflect any global properties. In contrast,
if K is set too high, the algorithm will lose it’s nonlinear
character and behave like a traditional Principal Component
Analysis. The number of data points is as well crucial since
both algorithms need dense datasets to catch the local linearity.
Nevertheless, we observe that MLLE is stronger than LLE
as the standard method is more sensitive to the choice of
parameters than its modified version. In terms of visualisation
and topology preservation, MLLE gets a better score than LLE
although both algorithms were able to extract the main features
of the dataset. This has been seen through the good classifica-
tion performance of the mapping with KNN classifier. Some
experiences have shown that the classification performance
of both algorithms are highly impacted by the choice of the
hyperparameter d. With weak choice of d, MLLE has a better
performance in terms of F1 score but when the parameter d
reflects better the real intrinsic dimension of the data, both
algorithm show the same performance. When adding noise
to the dataset, both algorithms get weaker and give almost
same performance in terms of classification. To illustrate how
MLLE is more stable than LLE in complex situations, we
applied rotations on the sneakers class. We observed that
MLLE has a better visual and topology preservation than
LLE when more than one item are rotated. Finally, the
classification performance of LLE with a Convolutional Neural
Network using embeddings on the full data shows slightly
better performance even for weak choice of parameter d than
MLLE. The initial computational cost of LLE and MLLE was
higher than the total training time of the CNN model but they
might be useful to test several models on the embedded dataset
with a faster training before using the whole dataset with all
of its dimensions.

To conclude our study, we showed that MLLE is stronger
than LLE with weak parameters and in complex situations.
With well adjusted parameters and not too complex data set,
the performance of both algorithms is very similar.
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